| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑛 = 𝑑 → ( Λ ‘ 𝑛 ) = ( Λ ‘ 𝑑 ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑛 = 𝑑 → ( 𝑥 / 𝑛 ) = ( 𝑥 / 𝑑 ) ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝑛 = 𝑑 → ( ψ ‘ ( 𝑥 / 𝑛 ) ) = ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) |
| 4 |
1 3
|
oveq12d |
⊢ ( 𝑛 = 𝑑 → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) ) |
| 5 |
4
|
cbvsumv |
⊢ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑑 ) · ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) |
| 6 |
|
fzfid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ∈ Fin ) |
| 7 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℕ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℕ ) |
| 9 |
|
vmacl |
⊢ ( 𝑑 ∈ ℕ → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
| 11 |
10
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑑 ) ∈ ℂ ) |
| 12 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) → 𝑚 ∈ ℕ ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 14 |
|
vmacl |
⊢ ( 𝑚 ∈ ℕ → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
| 16 |
15
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( Λ ‘ 𝑚 ) ∈ ℂ ) |
| 17 |
6 11 16
|
fsummulc2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑑 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ 𝑚 ) ) ) |
| 18 |
7
|
nnrpd |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℝ+ ) |
| 19 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) → ( 𝑥 / 𝑑 ) ∈ ℝ+ ) |
| 20 |
18 19
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑑 ) ∈ ℝ+ ) |
| 21 |
20
|
rpred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑑 ) ∈ ℝ ) |
| 22 |
|
chpval |
⊢ ( ( 𝑥 / 𝑑 ) ∈ ℝ → ( ψ ‘ ( 𝑥 / 𝑑 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑑 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑑 ) · ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) ) |
| 25 |
13
|
nncnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑚 ∈ ℂ ) |
| 26 |
7
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ∈ ℕ ) |
| 27 |
26
|
nncnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ∈ ℂ ) |
| 28 |
26
|
nnne0d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ≠ 0 ) |
| 29 |
25 27 28
|
divcan3d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( 𝑑 · 𝑚 ) / 𝑑 ) = 𝑚 ) |
| 30 |
29
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) = ( Λ ‘ 𝑚 ) ) |
| 31 |
30
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ 𝑚 ) ) ) |
| 32 |
31
|
sumeq2dv |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ 𝑚 ) ) ) |
| 33 |
17 24 32
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑑 ) · ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
| 34 |
33
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑑 ) · ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
| 35 |
5 34
|
eqtrid |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
| 36 |
|
fvoveq1 |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( Λ ‘ ( 𝑛 / 𝑑 ) ) = ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
| 38 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 39 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ⊆ ℕ |
| 40 |
|
simprr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) |
| 41 |
39 40
|
sselid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑑 ∈ ℕ ) |
| 42 |
41
|
anassrs |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → 𝑑 ∈ ℕ ) |
| 43 |
42 9
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
| 44 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 46 |
|
dvdsdivcl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( 𝑛 / 𝑑 ) ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) |
| 47 |
45 46
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( 𝑛 / 𝑑 ) ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) |
| 48 |
39 47
|
sselid |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( 𝑛 / 𝑑 ) ∈ ℕ ) |
| 49 |
|
vmacl |
⊢ ( ( 𝑛 / 𝑑 ) ∈ ℕ → ( Λ ‘ ( 𝑛 / 𝑑 ) ) ∈ ℝ ) |
| 50 |
48 49
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( Λ ‘ ( 𝑛 / 𝑑 ) ) ∈ ℝ ) |
| 51 |
43 50
|
remulcld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℝ ) |
| 52 |
51
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ ) |
| 53 |
52
|
anasss |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ ) |
| 54 |
37 38 53
|
dvdsflsumcom |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
| 55 |
35 54
|
eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ) |
| 56 |
55
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 57 |
|
fzfid |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 58 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 59 |
45 58
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 60 |
59
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
| 61 |
44
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
| 62 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 63 |
61 62
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 64 |
63
|
rpred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
| 65 |
|
chpcl |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 66 |
64 65
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 67 |
66
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
| 68 |
60 67
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
| 69 |
45
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 70 |
|
relogcl |
⊢ ( 𝑛 ∈ ℝ+ → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 71 |
69 70
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 72 |
71
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ ) |
| 73 |
60 72
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
| 74 |
57 68 73
|
fsumadd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 75 |
|
fzfid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... 𝑛 ) ∈ Fin ) |
| 76 |
|
dvdsssfz1 |
⊢ ( 𝑛 ∈ ℕ → { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
| 77 |
45 76
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
| 78 |
75 77
|
ssfid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ∈ Fin ) |
| 79 |
78 51
|
fsumrecl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℝ ) |
| 80 |
79
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ ) |
| 81 |
57 80 73
|
fsumadd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 82 |
56 74 81
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 83 |
72 67
|
addcomd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) + ( log ‘ 𝑛 ) ) ) |
| 84 |
83
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) + ( log ‘ 𝑛 ) ) ) ) |
| 85 |
60 67 72
|
adddid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) + ( log ‘ 𝑛 ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 86 |
84 85
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 87 |
86
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 88 |
|
logsqvma2 |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = ( Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 89 |
45 88
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = ( Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 90 |
89
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
| 91 |
82 87 90
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) ) |
| 92 |
|
fvoveq1 |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( log ‘ ( 𝑛 / 𝑑 ) ) = ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) |
| 93 |
92
|
oveq1d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) = ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) |
| 94 |
93
|
oveq2d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) ) |
| 95 |
|
mucl |
⊢ ( 𝑑 ∈ ℕ → ( μ ‘ 𝑑 ) ∈ ℤ ) |
| 96 |
41 95
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℤ ) |
| 97 |
96
|
zcnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
| 98 |
61
|
ad2antrl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑛 ∈ ℝ+ ) |
| 99 |
41
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑑 ∈ ℝ+ ) |
| 100 |
98 99
|
rpdivcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( 𝑛 / 𝑑 ) ∈ ℝ+ ) |
| 101 |
|
relogcl |
⊢ ( ( 𝑛 / 𝑑 ) ∈ ℝ+ → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℝ ) |
| 102 |
101
|
recnd |
⊢ ( ( 𝑛 / 𝑑 ) ∈ ℝ+ → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℂ ) |
| 103 |
100 102
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℂ ) |
| 104 |
103
|
sqcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ∈ ℂ ) |
| 105 |
97 104
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) ∈ ℂ ) |
| 106 |
94 38 105
|
dvdsflsumcom |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) ) |
| 107 |
29
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) = ( log ‘ 𝑚 ) ) |
| 108 |
107
|
oveq1d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) = ( ( log ‘ 𝑚 ) ↑ 2 ) ) |
| 109 |
108
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
| 110 |
109
|
sumeq2dv |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
| 111 |
110
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
| 112 |
91 106 111
|
3eqtrd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
| 113 |
112
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) = ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) ) |
| 114 |
113
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) |
| 115 |
114
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) |
| 116 |
|
eqid |
⊢ ( ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑑 ) ) ) ) ) / 𝑑 ) = ( ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑑 ) ) ) ) ) / 𝑑 ) |
| 117 |
116
|
selberglem2 |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) |
| 118 |
115 117
|
eqeltri |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) |