Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑛 = 𝑑 → ( Λ ‘ 𝑛 ) = ( Λ ‘ 𝑑 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑛 = 𝑑 → ( 𝑥 / 𝑛 ) = ( 𝑥 / 𝑑 ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝑛 = 𝑑 → ( ψ ‘ ( 𝑥 / 𝑛 ) ) = ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) |
4 |
1 3
|
oveq12d |
⊢ ( 𝑛 = 𝑑 → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) ) |
5 |
4
|
cbvsumv |
⊢ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑑 ) · ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) |
6 |
|
fzfid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ∈ Fin ) |
7 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℕ ) |
8 |
7
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℕ ) |
9 |
|
vmacl |
⊢ ( 𝑑 ∈ ℕ → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
10 |
8 9
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑑 ) ∈ ℂ ) |
12 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) → 𝑚 ∈ ℕ ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑚 ∈ ℕ ) |
14 |
|
vmacl |
⊢ ( 𝑚 ∈ ℕ → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
15 |
13 14
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( Λ ‘ 𝑚 ) ∈ ℂ ) |
17 |
6 11 16
|
fsummulc2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑑 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ 𝑚 ) ) ) |
18 |
7
|
nnrpd |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℝ+ ) |
19 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) → ( 𝑥 / 𝑑 ) ∈ ℝ+ ) |
20 |
18 19
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑑 ) ∈ ℝ+ ) |
21 |
20
|
rpred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑑 ) ∈ ℝ ) |
22 |
|
chpval |
⊢ ( ( 𝑥 / 𝑑 ) ∈ ℝ → ( ψ ‘ ( 𝑥 / 𝑑 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑑 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) |
24 |
23
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑑 ) · ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) ) |
25 |
13
|
nncnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑚 ∈ ℂ ) |
26 |
7
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ∈ ℕ ) |
27 |
26
|
nncnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ∈ ℂ ) |
28 |
26
|
nnne0d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ≠ 0 ) |
29 |
25 27 28
|
divcan3d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( 𝑑 · 𝑚 ) / 𝑑 ) = 𝑚 ) |
30 |
29
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) = ( Λ ‘ 𝑚 ) ) |
31 |
30
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ 𝑚 ) ) ) |
32 |
31
|
sumeq2dv |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ 𝑚 ) ) ) |
33 |
17 24 32
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑑 ) · ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
34 |
33
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑑 ) · ( ψ ‘ ( 𝑥 / 𝑑 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
35 |
5 34
|
eqtrid |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
36 |
|
fvoveq1 |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( Λ ‘ ( 𝑛 / 𝑑 ) ) = ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
38 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
39 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ⊆ ℕ |
40 |
|
simprr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) |
41 |
39 40
|
sselid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑑 ∈ ℕ ) |
42 |
41
|
anassrs |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → 𝑑 ∈ ℕ ) |
43 |
42 9
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
44 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
45 |
44
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
46 |
|
dvdsdivcl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( 𝑛 / 𝑑 ) ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) |
47 |
45 46
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( 𝑛 / 𝑑 ) ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) |
48 |
39 47
|
sselid |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( 𝑛 / 𝑑 ) ∈ ℕ ) |
49 |
|
vmacl |
⊢ ( ( 𝑛 / 𝑑 ) ∈ ℕ → ( Λ ‘ ( 𝑛 / 𝑑 ) ) ∈ ℝ ) |
50 |
48 49
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( Λ ‘ ( 𝑛 / 𝑑 ) ) ∈ ℝ ) |
51 |
43 50
|
remulcld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℝ ) |
52 |
51
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ ) |
53 |
52
|
anasss |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ ) |
54 |
37 38 53
|
dvdsflsumcom |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
55 |
35 54
|
eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ) |
56 |
55
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
57 |
|
fzfid |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
58 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
59 |
45 58
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
60 |
59
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
61 |
44
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
62 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
63 |
61 62
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
64 |
63
|
rpred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
65 |
|
chpcl |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
66 |
64 65
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
67 |
66
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
68 |
60 67
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
69 |
45
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
70 |
|
relogcl |
⊢ ( 𝑛 ∈ ℝ+ → ( log ‘ 𝑛 ) ∈ ℝ ) |
71 |
69 70
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
72 |
71
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ ) |
73 |
60 72
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
74 |
57 68 73
|
fsumadd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
75 |
|
fzfid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... 𝑛 ) ∈ Fin ) |
76 |
|
dvdsssfz1 |
⊢ ( 𝑛 ∈ ℕ → { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
77 |
45 76
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
78 |
75 77
|
ssfid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ∈ Fin ) |
79 |
78 51
|
fsumrecl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℝ ) |
80 |
79
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ ) |
81 |
57 80 73
|
fsumadd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
82 |
56 74 81
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
83 |
72 67
|
addcomd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) + ( log ‘ 𝑛 ) ) ) |
84 |
83
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) + ( log ‘ 𝑛 ) ) ) ) |
85 |
60 67 72
|
adddid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) + ( log ‘ 𝑛 ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
86 |
84 85
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
87 |
86
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
88 |
|
logsqvma2 |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = ( Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
89 |
45 88
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = ( Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
90 |
89
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑛 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) ) |
91 |
82 87 90
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) ) |
92 |
|
fvoveq1 |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( log ‘ ( 𝑛 / 𝑑 ) ) = ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) |
93 |
92
|
oveq1d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) = ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) |
94 |
93
|
oveq2d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) ) |
95 |
|
mucl |
⊢ ( 𝑑 ∈ ℕ → ( μ ‘ 𝑑 ) ∈ ℤ ) |
96 |
41 95
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℤ ) |
97 |
96
|
zcnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
98 |
61
|
ad2antrl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑛 ∈ ℝ+ ) |
99 |
41
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑑 ∈ ℝ+ ) |
100 |
98 99
|
rpdivcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( 𝑛 / 𝑑 ) ∈ ℝ+ ) |
101 |
|
relogcl |
⊢ ( ( 𝑛 / 𝑑 ) ∈ ℝ+ → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℝ ) |
102 |
101
|
recnd |
⊢ ( ( 𝑛 / 𝑑 ) ∈ ℝ+ → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℂ ) |
103 |
100 102
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℂ ) |
104 |
103
|
sqcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ∈ ℂ ) |
105 |
97 104
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) ∈ ℂ ) |
106 |
94 38 105
|
dvdsflsumcom |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) ) |
107 |
29
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) = ( log ‘ 𝑚 ) ) |
108 |
107
|
oveq1d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) = ( ( log ‘ 𝑚 ) ↑ 2 ) ) |
109 |
108
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
110 |
109
|
sumeq2dv |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
111 |
110
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
112 |
91 106 111
|
3eqtrd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
113 |
112
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) = ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) ) |
114 |
113
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) |
115 |
114
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) |
116 |
|
eqid |
⊢ ( ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑑 ) ) ) ) ) / 𝑑 ) = ( ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑑 ) ) ) ) ) / 𝑑 ) |
117 |
116
|
selberglem2 |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) |
118 |
115 117
|
eqeltri |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) |