| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 2 |  | elicopnf | ⊢ ( 1  ∈  ℝ  →  ( 𝑥  ∈  ( 1 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) ) ) | 
						
							| 3 | 1 2 | mp1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) ) ) | 
						
							| 4 | 3 | simprbda | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 5 | 4 | ex | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 [,) +∞ )  →  𝑥  ∈  ℝ ) ) | 
						
							| 6 | 5 | ssrdv | ⊢ ( ⊤  →  ( 1 [,) +∞ )  ⊆  ℝ ) | 
						
							| 7 | 1 | a1i | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 8 |  | fzfid | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 9 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 11 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 13 | 10 | nnrpd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 14 | 13 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 15 | 4 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 16 | 15 10 | nndivred | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 17 |  | chpcl | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ  →  ( ψ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ψ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 19 | 14 18 | readdcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 20 | 12 19 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 21 | 8 20 | fsumrecl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 22 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 23 | 22 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  1  ∈  ℝ+ ) | 
						
							| 24 | 3 | simplbda | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 25 | 4 23 24 | rpgecld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 26 | 21 25 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  ∈  ℝ ) | 
						
							| 27 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 28 | 27 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  2  ∈  ℝ ) | 
						
							| 29 | 25 | relogcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 30 | 28 29 | remulcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  ( 2  ·  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 31 | 26 30 | resubcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 32 | 31 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 33 | 25 | ex | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 [,) +∞ )  →  𝑥  ∈  ℝ+ ) ) | 
						
							| 34 | 33 | ssrdv | ⊢ ( ⊤  →  ( 1 [,) +∞ )  ⊆  ℝ+ ) | 
						
							| 35 |  | selberg | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) | 
						
							| 36 | 35 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 37 | 34 36 | o1res2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 [,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 38 |  | fzfid | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  ( 1 ... ( ⌊ ‘ 𝑦 ) )  ∈  Fin ) | 
						
							| 39 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 41 | 40 11 | syl | ⊢ ( ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 42 | 40 | nnrpd | ⊢ ( ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 43 | 42 | relogcld | ⊢ ( ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 44 |  | simprl | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 46 | 45 40 | nndivred | ⊢ ( ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( 𝑦  /  𝑛 )  ∈  ℝ ) | 
						
							| 47 |  | chpcl | ⊢ ( ( 𝑦  /  𝑛 )  ∈  ℝ  →  ( ψ ‘ ( 𝑦  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ψ ‘ ( 𝑦  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 49 | 43 48 | readdcld | ⊢ ( ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 50 | 41 49 | remulcld | ⊢ ( ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 51 | 38 50 | fsumrecl | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 52 | 27 | a1i | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  2  ∈  ℝ ) | 
						
							| 53 | 22 | a1i | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  1  ∈  ℝ+ ) | 
						
							| 54 |  | simprr | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  1  ≤  𝑦 ) | 
						
							| 55 | 44 53 54 | rpgecld | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  𝑦  ∈  ℝ+ ) | 
						
							| 56 | 55 | relogcld | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  ( log ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 57 | 52 56 | remulcld | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  ( 2  ·  ( log ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 58 | 51 57 | readdcld | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  +  ( 2  ·  ( log ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 59 | 31 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 60 | 59 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 61 | 60 | abscld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ∈  ℝ ) | 
						
							| 62 | 26 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  ∈  ℝ ) | 
						
							| 63 | 30 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 2  ·  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 64 | 62 63 | readdcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  +  ( 2  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 65 |  | fzfid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 1 ... ( ⌊ ‘ 𝑦 ) )  ∈  Fin ) | 
						
							| 66 | 39 | adantl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 67 | 66 11 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 68 | 66 | nnrpd | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 69 | 68 | relogcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 70 |  | simprll | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 72 | 71 66 | nndivred | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( 𝑦  /  𝑛 )  ∈  ℝ ) | 
						
							| 73 | 72 47 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ψ ‘ ( 𝑦  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 74 | 69 73 | readdcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 75 | 67 74 | remulcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 76 | 65 75 | fsumrecl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 77 | 27 | a1i | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  2  ∈  ℝ ) | 
						
							| 78 | 25 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 79 | 4 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 80 |  | simprr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  <  𝑦 ) | 
						
							| 81 | 79 70 80 | ltled | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ≤  𝑦 ) | 
						
							| 82 | 70 78 81 | rpgecld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑦  ∈  ℝ+ ) | 
						
							| 83 | 82 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( log ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 84 | 77 83 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 2  ·  ( log ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 85 | 76 84 | readdcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  +  ( 2  ·  ( log ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 86 | 62 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  ∈  ℂ ) | 
						
							| 87 | 63 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 2  ·  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 88 | 86 87 | abs2dif2d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ≤  ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 ) )  +  ( abs ‘ ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 89 | 21 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 90 |  | vmage0 | ⊢ ( 𝑛  ∈  ℕ  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 91 | 10 90 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 92 | 10 | nnred | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 93 | 10 | nnge1d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ≤  𝑛 ) | 
						
							| 94 | 92 93 | logge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( log ‘ 𝑛 ) ) | 
						
							| 95 |  | chpge0 | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ  →  0  ≤  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 96 | 16 95 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 97 | 14 18 94 96 | addge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 98 | 12 19 91 97 | mulge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 99 | 8 20 98 | fsumge0 | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  0  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 100 | 99 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  0  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 101 | 89 78 100 | divge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  0  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 ) ) | 
						
							| 102 | 62 101 | absidd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 ) ) | 
						
							| 103 | 78 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 104 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 105 |  | rpge0 | ⊢ ( 2  ∈  ℝ+  →  0  ≤  2 ) | 
						
							| 106 | 104 105 | mp1i | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  0  ≤  2 ) | 
						
							| 107 | 24 | adantr | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  1  ≤  𝑥 ) | 
						
							| 108 | 79 107 | logge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  0  ≤  ( log ‘ 𝑥 ) ) | 
						
							| 109 | 77 103 106 108 | mulge0d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  0  ≤  ( 2  ·  ( log ‘ 𝑥 ) ) ) | 
						
							| 110 | 63 109 | absidd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( abs ‘ ( 2  ·  ( log ‘ 𝑥 ) ) )  =  ( 2  ·  ( log ‘ 𝑥 ) ) ) | 
						
							| 111 | 102 110 | oveq12d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 ) )  +  ( abs ‘ ( 2  ·  ( log ‘ 𝑥 ) ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  +  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 112 | 88 111 | breqtrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ≤  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  +  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 113 | 22 | a1i | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  1  ∈  ℝ+ ) | 
						
							| 114 | 79 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 115 | 114 66 | nndivred | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 116 | 115 17 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ψ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 117 | 69 116 | readdcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 118 | 67 117 | remulcld | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 119 | 65 118 | fsumrecl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 120 | 66 90 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 121 | 66 | nnred | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 122 | 66 | nnge1d | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  1  ≤  𝑛 ) | 
						
							| 123 | 121 122 | logge0d | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  0  ≤  ( log ‘ 𝑛 ) ) | 
						
							| 124 | 115 95 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  0  ≤  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 125 | 69 116 123 124 | addge0d | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  0  ≤  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 126 | 67 117 120 125 | mulge0d | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  0  ≤  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 127 |  | flword2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑥  ≤  𝑦 )  →  ( ⌊ ‘ 𝑦 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 128 | 79 70 81 127 | syl3anc | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ⌊ ‘ 𝑦 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 129 |  | fzss2 | ⊢ ( ( ⌊ ‘ 𝑦 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ⊆  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) | 
						
							| 130 | 128 129 | syl | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ⊆  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) | 
						
							| 131 | 65 118 126 130 | fsumless | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 132 | 81 | adantr | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑥  ≤  𝑦 ) | 
						
							| 133 | 114 71 68 132 | lediv1dd | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( 𝑥  /  𝑛 )  ≤  ( 𝑦  /  𝑛 ) ) | 
						
							| 134 |  | chpwordi | ⊢ ( ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  ( 𝑦  /  𝑛 )  ∈  ℝ  ∧  ( 𝑥  /  𝑛 )  ≤  ( 𝑦  /  𝑛 ) )  →  ( ψ ‘ ( 𝑥  /  𝑛 ) )  ≤  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) | 
						
							| 135 | 115 72 133 134 | syl3anc | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ψ ‘ ( 𝑥  /  𝑛 ) )  ≤  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) | 
						
							| 136 | 116 73 69 135 | leadd2dd | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  ≤  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) ) | 
						
							| 137 | 117 74 67 120 136 | lemul2ad | ⊢ ( ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  ≤  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) ) ) | 
						
							| 138 | 65 118 75 137 | fsumle | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) ) ) | 
						
							| 139 | 89 119 76 131 138 | letrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) ) ) | 
						
							| 140 | 89 76 113 79 100 139 107 | lediv12ad | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  /  1 ) ) | 
						
							| 141 | 76 | recnd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 142 | 141 | div1d | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  /  1 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) ) ) | 
						
							| 143 | 140 142 | breqtrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) ) ) | 
						
							| 144 | 78 82 | logled | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝑥  ≤  𝑦  ↔  ( log ‘ 𝑥 )  ≤  ( log ‘ 𝑦 ) ) ) | 
						
							| 145 | 81 144 | mpbid | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( log ‘ 𝑥 )  ≤  ( log ‘ 𝑦 ) ) | 
						
							| 146 | 103 83 77 106 145 | lemul2ad | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 2  ·  ( log ‘ 𝑥 ) )  ≤  ( 2  ·  ( log ‘ 𝑦 ) ) ) | 
						
							| 147 | 62 63 76 84 143 146 | le2addd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  +  ( 2  ·  ( log ‘ 𝑥 ) ) )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  +  ( 2  ·  ( log ‘ 𝑦 ) ) ) ) | 
						
							| 148 | 61 64 85 112 147 | letrd | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑦  /  𝑛 ) ) ) )  +  ( 2  ·  ( log ‘ 𝑦 ) ) ) ) | 
						
							| 149 | 6 7 32 37 58 148 | o1bddrp | ⊢ ( ⊤  →  ∃ 𝑐  ∈  ℝ+ ∀ 𝑥  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ≤  𝑐 ) | 
						
							| 150 | 149 | mptru | ⊢ ∃ 𝑐  ∈  ℝ+ ∀ 𝑥  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ≤  𝑐 |