Metamath Proof Explorer


Theorem selbergb

Description: Convert eventual boundedness in selberg to boundedness on [ 1 , +oo ) . (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion selbergb c+x1+∞n=1xΛnlogn+ψxnx2logxc

Proof

Step Hyp Ref Expression
1 1re 1
2 elicopnf 1x1+∞x1x
3 1 2 mp1i x1+∞x1x
4 3 simprbda x1+∞x
5 4 ex x1+∞x
6 5 ssrdv 1+∞
7 1 a1i 1
8 fzfid x1+∞1xFin
9 elfznn n1xn
10 9 adantl x1+∞n1xn
11 vmacl nΛn
12 10 11 syl x1+∞n1xΛn
13 10 nnrpd x1+∞n1xn+
14 13 relogcld x1+∞n1xlogn
15 4 adantr x1+∞n1xx
16 15 10 nndivred x1+∞n1xxn
17 chpcl xnψxn
18 16 17 syl x1+∞n1xψxn
19 14 18 readdcld x1+∞n1xlogn+ψxn
20 12 19 remulcld x1+∞n1xΛnlogn+ψxn
21 8 20 fsumrecl x1+∞n=1xΛnlogn+ψxn
22 1rp 1+
23 22 a1i x1+∞1+
24 3 simplbda x1+∞1x
25 4 23 24 rpgecld x1+∞x+
26 21 25 rerpdivcld x1+∞n=1xΛnlogn+ψxnx
27 2re 2
28 27 a1i x1+∞2
29 25 relogcld x1+∞logx
30 28 29 remulcld x1+∞2logx
31 26 30 resubcld x1+∞n=1xΛnlogn+ψxnx2logx
32 31 recnd x1+∞n=1xΛnlogn+ψxnx2logx
33 25 ex x1+∞x+
34 33 ssrdv 1+∞+
35 selberg x+n=1xΛnlogn+ψxnx2logx𝑂1
36 35 a1i x+n=1xΛnlogn+ψxnx2logx𝑂1
37 34 36 o1res2 x1+∞n=1xΛnlogn+ψxnx2logx𝑂1
38 fzfid y1y1yFin
39 elfznn n1yn
40 39 adantl y1yn1yn
41 40 11 syl y1yn1yΛn
42 40 nnrpd y1yn1yn+
43 42 relogcld y1yn1ylogn
44 simprl y1yy
45 44 adantr y1yn1yy
46 45 40 nndivred y1yn1yyn
47 chpcl ynψyn
48 46 47 syl y1yn1yψyn
49 43 48 readdcld y1yn1ylogn+ψyn
50 41 49 remulcld y1yn1yΛnlogn+ψyn
51 38 50 fsumrecl y1yn=1yΛnlogn+ψyn
52 27 a1i y1y2
53 22 a1i y1y1+
54 simprr y1y1y
55 44 53 54 rpgecld y1yy+
56 55 relogcld y1ylogy
57 52 56 remulcld y1y2logy
58 51 57 readdcld y1yn=1yΛnlogn+ψyn+2logy
59 31 adantr x1+∞y1yx<yn=1xΛnlogn+ψxnx2logx
60 59 recnd x1+∞y1yx<yn=1xΛnlogn+ψxnx2logx
61 60 abscld x1+∞y1yx<yn=1xΛnlogn+ψxnx2logx
62 26 adantr x1+∞y1yx<yn=1xΛnlogn+ψxnx
63 30 adantr x1+∞y1yx<y2logx
64 62 63 readdcld x1+∞y1yx<yn=1xΛnlogn+ψxnx+2logx
65 fzfid x1+∞y1yx<y1yFin
66 39 adantl x1+∞y1yx<yn1yn
67 66 11 syl x1+∞y1yx<yn1yΛn
68 66 nnrpd x1+∞y1yx<yn1yn+
69 68 relogcld x1+∞y1yx<yn1ylogn
70 simprll x1+∞y1yx<yy
71 70 adantr x1+∞y1yx<yn1yy
72 71 66 nndivred x1+∞y1yx<yn1yyn
73 72 47 syl x1+∞y1yx<yn1yψyn
74 69 73 readdcld x1+∞y1yx<yn1ylogn+ψyn
75 67 74 remulcld x1+∞y1yx<yn1yΛnlogn+ψyn
76 65 75 fsumrecl x1+∞y1yx<yn=1yΛnlogn+ψyn
77 27 a1i x1+∞y1yx<y2
78 25 adantr x1+∞y1yx<yx+
79 4 adantr x1+∞y1yx<yx
80 simprr x1+∞y1yx<yx<y
81 79 70 80 ltled x1+∞y1yx<yxy
82 70 78 81 rpgecld x1+∞y1yx<yy+
83 82 relogcld x1+∞y1yx<ylogy
84 77 83 remulcld x1+∞y1yx<y2logy
85 76 84 readdcld x1+∞y1yx<yn=1yΛnlogn+ψyn+2logy
86 62 recnd x1+∞y1yx<yn=1xΛnlogn+ψxnx
87 63 recnd x1+∞y1yx<y2logx
88 86 87 abs2dif2d x1+∞y1yx<yn=1xΛnlogn+ψxnx2logxn=1xΛnlogn+ψxnx+2logx
89 21 adantr x1+∞y1yx<yn=1xΛnlogn+ψxn
90 vmage0 n0Λn
91 10 90 syl x1+∞n1x0Λn
92 10 nnred x1+∞n1xn
93 10 nnge1d x1+∞n1x1n
94 92 93 logge0d x1+∞n1x0logn
95 chpge0 xn0ψxn
96 16 95 syl x1+∞n1x0ψxn
97 14 18 94 96 addge0d x1+∞n1x0logn+ψxn
98 12 19 91 97 mulge0d x1+∞n1x0Λnlogn+ψxn
99 8 20 98 fsumge0 x1+∞0n=1xΛnlogn+ψxn
100 99 adantr x1+∞y1yx<y0n=1xΛnlogn+ψxn
101 89 78 100 divge0d x1+∞y1yx<y0n=1xΛnlogn+ψxnx
102 62 101 absidd x1+∞y1yx<yn=1xΛnlogn+ψxnx=n=1xΛnlogn+ψxnx
103 78 relogcld x1+∞y1yx<ylogx
104 2rp 2+
105 rpge0 2+02
106 104 105 mp1i x1+∞y1yx<y02
107 24 adantr x1+∞y1yx<y1x
108 79 107 logge0d x1+∞y1yx<y0logx
109 77 103 106 108 mulge0d x1+∞y1yx<y02logx
110 63 109 absidd x1+∞y1yx<y2logx=2logx
111 102 110 oveq12d x1+∞y1yx<yn=1xΛnlogn+ψxnx+2logx=n=1xΛnlogn+ψxnx+2logx
112 88 111 breqtrd x1+∞y1yx<yn=1xΛnlogn+ψxnx2logxn=1xΛnlogn+ψxnx+2logx
113 22 a1i x1+∞y1yx<y1+
114 79 adantr x1+∞y1yx<yn1yx
115 114 66 nndivred x1+∞y1yx<yn1yxn
116 115 17 syl x1+∞y1yx<yn1yψxn
117 69 116 readdcld x1+∞y1yx<yn1ylogn+ψxn
118 67 117 remulcld x1+∞y1yx<yn1yΛnlogn+ψxn
119 65 118 fsumrecl x1+∞y1yx<yn=1yΛnlogn+ψxn
120 66 90 syl x1+∞y1yx<yn1y0Λn
121 66 nnred x1+∞y1yx<yn1yn
122 66 nnge1d x1+∞y1yx<yn1y1n
123 121 122 logge0d x1+∞y1yx<yn1y0logn
124 115 95 syl x1+∞y1yx<yn1y0ψxn
125 69 116 123 124 addge0d x1+∞y1yx<yn1y0logn+ψxn
126 67 117 120 125 mulge0d x1+∞y1yx<yn1y0Λnlogn+ψxn
127 flword2 xyxyyx
128 79 70 81 127 syl3anc x1+∞y1yx<yyx
129 fzss2 yx1x1y
130 128 129 syl x1+∞y1yx<y1x1y
131 65 118 126 130 fsumless x1+∞y1yx<yn=1xΛnlogn+ψxnn=1yΛnlogn+ψxn
132 81 adantr x1+∞y1yx<yn1yxy
133 114 71 68 132 lediv1dd x1+∞y1yx<yn1yxnyn
134 chpwordi xnynxnynψxnψyn
135 115 72 133 134 syl3anc x1+∞y1yx<yn1yψxnψyn
136 116 73 69 135 leadd2dd x1+∞y1yx<yn1ylogn+ψxnlogn+ψyn
137 117 74 67 120 136 lemul2ad x1+∞y1yx<yn1yΛnlogn+ψxnΛnlogn+ψyn
138 65 118 75 137 fsumle x1+∞y1yx<yn=1yΛnlogn+ψxnn=1yΛnlogn+ψyn
139 89 119 76 131 138 letrd x1+∞y1yx<yn=1xΛnlogn+ψxnn=1yΛnlogn+ψyn
140 89 76 113 79 100 139 107 lediv12ad x1+∞y1yx<yn=1xΛnlogn+ψxnxn=1yΛnlogn+ψyn1
141 76 recnd x1+∞y1yx<yn=1yΛnlogn+ψyn
142 141 div1d x1+∞y1yx<yn=1yΛnlogn+ψyn1=n=1yΛnlogn+ψyn
143 140 142 breqtrd x1+∞y1yx<yn=1xΛnlogn+ψxnxn=1yΛnlogn+ψyn
144 78 82 logled x1+∞y1yx<yxylogxlogy
145 81 144 mpbid x1+∞y1yx<ylogxlogy
146 103 83 77 106 145 lemul2ad x1+∞y1yx<y2logx2logy
147 62 63 76 84 143 146 le2addd x1+∞y1yx<yn=1xΛnlogn+ψxnx+2logxn=1yΛnlogn+ψyn+2logy
148 61 64 85 112 147 letrd x1+∞y1yx<yn=1xΛnlogn+ψxnx2logxn=1yΛnlogn+ψyn+2logy
149 6 7 32 37 58 148 o1bddrp c+x1+∞n=1xΛnlogn+ψxnx2logxc
150 149 mptru c+x1+∞n=1xΛnlogn+ψxnx2logxc