| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 2 |  | chpcl | ⊢ ( 𝑥  ∈  ℝ  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 4 | 3 | recnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ψ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 5 |  | rprege0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 6 |  | flge0nn0 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 8 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ℕ0  →  ( ( ⌊ ‘ 𝑥 )  +  1 )  ∈  ℕ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ⌊ ‘ 𝑥 )  +  1 )  ∈  ℕ ) | 
						
							| 10 | 9 | nnrpd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ⌊ ‘ 𝑥 )  +  1 )  ∈  ℝ+ ) | 
						
							| 11 | 10 | relogcld | ⊢ ( 𝑥  ∈  ℝ+  →  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ∈  ℂ ) | 
						
							| 13 |  | relogcl | ⊢ ( 𝑥  ∈  ℝ+  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 15 | 12 14 | subcld | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 16 | 4 15 | mulcld | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 17 |  | fzfid | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 18 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 20 | 19 | nnrpd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 21 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 22 |  | rpaddcl | ⊢ ( ( 𝑛  ∈  ℝ+  ∧  1  ∈  ℝ+ )  →  ( 𝑛  +  1 )  ∈  ℝ+ ) | 
						
							| 23 | 21 22 | mpan2 | ⊢ ( 𝑛  ∈  ℝ+  →  ( 𝑛  +  1 )  ∈  ℝ+ ) | 
						
							| 24 | 23 | relogcld | ⊢ ( 𝑛  ∈  ℝ+  →  ( log ‘ ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 25 |  | relogcl | ⊢ ( 𝑛  ∈  ℝ+  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 26 | 24 25 | resubcld | ⊢ ( 𝑛  ∈  ℝ+  →  ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 27 |  | rpre | ⊢ ( 𝑛  ∈  ℝ+  →  𝑛  ∈  ℝ ) | 
						
							| 28 |  | chpcl | ⊢ ( 𝑛  ∈  ℝ  →  ( ψ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝑛  ∈  ℝ+  →  ( ψ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 30 | 26 29 | remulcld | ⊢ ( 𝑛  ∈  ℝ+  →  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 31 | 30 | recnd | ⊢ ( 𝑛  ∈  ℝ+  →  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 32 | 20 31 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 33 | 17 32 | fsumcl | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 34 |  | rpcnne0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 35 |  | divsubdir | ⊢ ( ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  ∈  ℂ  ∧  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  ∈  ℂ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) )  →  ( ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  /  𝑥 )  =  ( ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  /  𝑥 )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  /  𝑥 ) ) ) | 
						
							| 36 | 16 33 34 35 | syl3anc | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  /  𝑥 )  =  ( ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  /  𝑥 )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  /  𝑥 ) ) ) | 
						
							| 37 | 4 12 | mulcld | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  ∈  ℂ ) | 
						
							| 38 | 4 14 | mulcld | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 39 | 37 38 33 | sub32d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  =  ( ( ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 40 | 4 12 14 | subdid | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  =  ( ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  =  ( ( ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) ) ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( log ‘ 𝑚 )  =  ( log ‘ 𝑛 ) ) | 
						
							| 43 |  | fvoveq1 | ⊢ ( 𝑚  =  𝑛  →  ( ψ ‘ ( 𝑚  −  1 ) )  =  ( ψ ‘ ( 𝑛  −  1 ) ) ) | 
						
							| 44 | 42 43 | jca | ⊢ ( 𝑚  =  𝑛  →  ( ( log ‘ 𝑚 )  =  ( log ‘ 𝑛 )  ∧  ( ψ ‘ ( 𝑚  −  1 ) )  =  ( ψ ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( log ‘ 𝑚 )  =  ( log ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 46 |  | fvoveq1 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ψ ‘ ( 𝑚  −  1 ) )  =  ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) ) ) | 
						
							| 47 | 45 46 | jca | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( log ‘ 𝑚 )  =  ( log ‘ ( 𝑛  +  1 ) )  ∧  ( ψ ‘ ( 𝑚  −  1 ) )  =  ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) ) ) ) | 
						
							| 48 |  | fveq2 | ⊢ ( 𝑚  =  1  →  ( log ‘ 𝑚 )  =  ( log ‘ 1 ) ) | 
						
							| 49 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 50 | 48 49 | eqtrdi | ⊢ ( 𝑚  =  1  →  ( log ‘ 𝑚 )  =  0 ) | 
						
							| 51 |  | oveq1 | ⊢ ( 𝑚  =  1  →  ( 𝑚  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 52 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 53 | 51 52 | eqtrdi | ⊢ ( 𝑚  =  1  →  ( 𝑚  −  1 )  =  0 ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( 𝑚  =  1  →  ( ψ ‘ ( 𝑚  −  1 ) )  =  ( ψ ‘ 0 ) ) | 
						
							| 55 |  | 2pos | ⊢ 0  <  2 | 
						
							| 56 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 57 |  | chpeq0 | ⊢ ( 0  ∈  ℝ  →  ( ( ψ ‘ 0 )  =  0  ↔  0  <  2 ) ) | 
						
							| 58 | 56 57 | ax-mp | ⊢ ( ( ψ ‘ 0 )  =  0  ↔  0  <  2 ) | 
						
							| 59 | 55 58 | mpbir | ⊢ ( ψ ‘ 0 )  =  0 | 
						
							| 60 | 54 59 | eqtrdi | ⊢ ( 𝑚  =  1  →  ( ψ ‘ ( 𝑚  −  1 ) )  =  0 ) | 
						
							| 61 | 50 60 | jca | ⊢ ( 𝑚  =  1  →  ( ( log ‘ 𝑚 )  =  0  ∧  ( ψ ‘ ( 𝑚  −  1 ) )  =  0 ) ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑚  =  ( ( ⌊ ‘ 𝑥 )  +  1 )  →  ( log ‘ 𝑚 )  =  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) | 
						
							| 63 |  | fvoveq1 | ⊢ ( 𝑚  =  ( ( ⌊ ‘ 𝑥 )  +  1 )  →  ( ψ ‘ ( 𝑚  −  1 ) )  =  ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 ) ) ) | 
						
							| 64 | 62 63 | jca | ⊢ ( 𝑚  =  ( ( ⌊ ‘ 𝑥 )  +  1 )  →  ( ( log ‘ 𝑚 )  =  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ∧  ( ψ ‘ ( 𝑚  −  1 ) )  =  ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 ) ) ) ) | 
						
							| 65 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 66 | 9 65 | eleqtrdi | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ⌊ ‘ 𝑥 )  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 67 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝑥 )  +  1 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 69 | 68 | nnrpd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 70 | 69 | relogcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  →  ( log ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 71 | 70 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  →  ( log ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 72 | 68 | nnred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  →  𝑚  ∈  ℝ ) | 
						
							| 73 |  | peano2rem | ⊢ ( 𝑚  ∈  ℝ  →  ( 𝑚  −  1 )  ∈  ℝ ) | 
						
							| 74 | 72 73 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  →  ( 𝑚  −  1 )  ∈  ℝ ) | 
						
							| 75 |  | chpcl | ⊢ ( ( 𝑚  −  1 )  ∈  ℝ  →  ( ψ ‘ ( 𝑚  −  1 ) )  ∈  ℝ ) | 
						
							| 76 | 74 75 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  →  ( ψ ‘ ( 𝑚  −  1 ) )  ∈  ℝ ) | 
						
							| 77 | 76 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑚  ∈  ( 1 ... ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  →  ( ψ ‘ ( 𝑚  −  1 ) )  ∈  ℂ ) | 
						
							| 78 | 44 47 61 64 66 71 77 | fsumparts | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ..^ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ( ( log ‘ 𝑛 )  ·  ( ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) )  −  ( ψ ‘ ( 𝑛  −  1 ) ) ) )  =  ( ( ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ·  ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 ) ) )  −  ( 0  ·  0 ) )  −  Σ 𝑛  ∈  ( 1 ..^ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) ) ) ) ) | 
						
							| 79 | 7 | nn0zd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 80 |  | fzval3 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ℤ  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  =  ( 1 ..^ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) | 
						
							| 81 | 79 80 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  =  ( 1 ..^ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) | 
						
							| 82 | 81 | eqcomd | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1 ..^ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  =  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 83 |  | nnm1nn0 | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 84 | 19 83 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 85 | 84 | nn0red | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑛  −  1 )  ∈  ℝ ) | 
						
							| 86 |  | chpcl | ⊢ ( ( 𝑛  −  1 )  ∈  ℝ  →  ( ψ ‘ ( 𝑛  −  1 ) )  ∈  ℝ ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ψ ‘ ( 𝑛  −  1 ) )  ∈  ℝ ) | 
						
							| 88 | 87 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ψ ‘ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 89 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 90 | 19 89 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 91 | 90 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 92 | 19 | nncnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 93 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 94 |  | pncan | ⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 ) | 
						
							| 95 | 92 93 94 | sylancl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 ) | 
						
							| 96 |  | npcan | ⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑛  −  1 )  +  1 )  =  𝑛 ) | 
						
							| 97 | 92 93 96 | sylancl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑛  −  1 )  +  1 )  =  𝑛 ) | 
						
							| 98 | 95 97 | eqtr4d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑛  +  1 )  −  1 )  =  ( ( 𝑛  −  1 )  +  1 ) ) | 
						
							| 99 | 98 | fveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) )  =  ( ψ ‘ ( ( 𝑛  −  1 )  +  1 ) ) ) | 
						
							| 100 |  | chpp1 | ⊢ ( ( 𝑛  −  1 )  ∈  ℕ0  →  ( ψ ‘ ( ( 𝑛  −  1 )  +  1 ) )  =  ( ( ψ ‘ ( 𝑛  −  1 ) )  +  ( Λ ‘ ( ( 𝑛  −  1 )  +  1 ) ) ) ) | 
						
							| 101 | 84 100 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ψ ‘ ( ( 𝑛  −  1 )  +  1 ) )  =  ( ( ψ ‘ ( 𝑛  −  1 ) )  +  ( Λ ‘ ( ( 𝑛  −  1 )  +  1 ) ) ) ) | 
						
							| 102 | 97 | fveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ ( ( 𝑛  −  1 )  +  1 ) )  =  ( Λ ‘ 𝑛 ) ) | 
						
							| 103 | 102 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ψ ‘ ( 𝑛  −  1 ) )  +  ( Λ ‘ ( ( 𝑛  −  1 )  +  1 ) ) )  =  ( ( ψ ‘ ( 𝑛  −  1 ) )  +  ( Λ ‘ 𝑛 ) ) ) | 
						
							| 104 | 99 101 103 | 3eqtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) )  =  ( ( ψ ‘ ( 𝑛  −  1 ) )  +  ( Λ ‘ 𝑛 ) ) ) | 
						
							| 105 | 88 91 104 | mvrladdd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) )  −  ( ψ ‘ ( 𝑛  −  1 ) ) )  =  ( Λ ‘ 𝑛 ) ) | 
						
							| 106 | 105 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ 𝑛 )  ·  ( ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) )  −  ( ψ ‘ ( 𝑛  −  1 ) ) ) )  =  ( ( log ‘ 𝑛 )  ·  ( Λ ‘ 𝑛 ) ) ) | 
						
							| 107 | 20 | relogcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 108 | 107 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 109 | 91 108 | mulcomd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  =  ( ( log ‘ 𝑛 )  ·  ( Λ ‘ 𝑛 ) ) ) | 
						
							| 110 | 106 109 | eqtr4d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ 𝑛 )  ·  ( ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) )  −  ( ψ ‘ ( 𝑛  −  1 ) ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) | 
						
							| 111 | 82 110 | sumeq12rdv | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ..^ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ( ( log ‘ 𝑛 )  ·  ( ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) )  −  ( ψ ‘ ( 𝑛  −  1 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) | 
						
							| 112 | 7 | nn0cnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 113 |  | pncan | ⊢ ( ( ( ⌊ ‘ 𝑥 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 114 | 112 93 113 | sylancl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 115 | 114 | fveq2d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 ) )  =  ( ψ ‘ ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 116 |  | chpfl | ⊢ ( 𝑥  ∈  ℝ  →  ( ψ ‘ ( ⌊ ‘ 𝑥 ) )  =  ( ψ ‘ 𝑥 ) ) | 
						
							| 117 | 1 116 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ψ ‘ ( ⌊ ‘ 𝑥 ) )  =  ( ψ ‘ 𝑥 ) ) | 
						
							| 118 | 115 117 | eqtrd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 ) )  =  ( ψ ‘ 𝑥 ) ) | 
						
							| 119 | 118 | oveq2d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ·  ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 ) ) )  =  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ·  ( ψ ‘ 𝑥 ) ) ) | 
						
							| 120 | 12 4 | mulcomd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ·  ( ψ ‘ 𝑥 ) )  =  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) ) | 
						
							| 121 | 119 120 | eqtrd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ·  ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 ) ) )  =  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) ) | 
						
							| 122 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 123 | 122 | mul01i | ⊢ ( 0  ·  0 )  =  0 | 
						
							| 124 | 123 | a1i | ⊢ ( 𝑥  ∈  ℝ+  →  ( 0  ·  0 )  =  0 ) | 
						
							| 125 | 121 124 | oveq12d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ·  ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 ) ) )  −  ( 0  ·  0 ) )  =  ( ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  −  0 ) ) | 
						
							| 126 | 37 | subid1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  −  0 )  =  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) ) | 
						
							| 127 | 125 126 | eqtrd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ·  ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 ) ) )  −  ( 0  ·  0 ) )  =  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) ) | 
						
							| 128 | 95 | fveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) )  =  ( ψ ‘ 𝑛 ) ) | 
						
							| 129 | 128 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) ) )  =  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) ) | 
						
							| 130 | 82 129 | sumeq12rdv | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ..^ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) ) | 
						
							| 131 | 127 130 | oveq12d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ·  ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 )  +  1 )  −  1 ) ) )  −  ( 0  ·  0 ) )  −  Σ 𝑛  ∈  ( 1 ..^ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ ( ( 𝑛  +  1 )  −  1 ) ) ) )  =  ( ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) ) ) | 
						
							| 132 | 78 111 131 | 3eqtr3d | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  =  ( ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) ) ) | 
						
							| 133 | 132 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  =  ( ( ( ( ψ ‘ 𝑥 )  ·  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 134 | 39 41 133 | 3eqtr4d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 135 | 134 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  /  𝑥 )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  𝑥 ) ) | 
						
							| 136 |  | div23 | ⊢ ( ( ( ψ ‘ 𝑥 )  ∈  ℂ  ∧  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) )  ∈  ℂ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) )  →  ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  /  𝑥 )  =  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 137 | 4 15 34 136 | syl3anc | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  /  𝑥 )  =  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 138 | 137 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ( ψ ‘ 𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  /  𝑥 )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  /  𝑥 ) )  =  ( ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  /  𝑥 ) ) ) | 
						
							| 139 | 36 135 138 | 3eqtr3rd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  /  𝑥 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  𝑥 ) ) | 
						
							| 140 | 139 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  /  𝑥 ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  𝑥 ) ) | 
						
							| 141 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 142 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  /  𝑥 )  ∈  V ) | 
						
							| 143 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 144 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 145 | 143 144 | ssexi | ⊢ ℝ+  ∈  V | 
						
							| 146 | 145 | a1i | ⊢ ( ⊤  →  ℝ+  ∈  V ) | 
						
							| 147 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ∈  V ) | 
						
							| 148 | 15 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 149 |  | eqidd | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) ) ) | 
						
							| 150 |  | eqidd | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 151 | 146 147 148 149 150 | offval2 | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ∘f   ·  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 152 |  | chpo1ub | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ∈  𝑂(1) | 
						
							| 153 |  | 0red | ⊢ ( ⊤  →  0  ∈  ℝ ) | 
						
							| 154 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 155 |  | divrcnv | ⊢ ( 1  ∈  ℂ  →  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) )  ⇝𝑟  0 ) | 
						
							| 156 | 93 155 | mp1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) )  ⇝𝑟  0 ) | 
						
							| 157 |  | rpreccl | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 158 | 157 | rpred | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1  /  𝑥 )  ∈  ℝ ) | 
						
							| 159 | 158 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  𝑥 )  ∈  ℝ ) | 
						
							| 160 | 11 13 | resubcld | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 161 | 160 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 162 |  | rpaddcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  1  ∈  ℝ+ )  →  ( 𝑥  +  1 )  ∈  ℝ+ ) | 
						
							| 163 | 21 162 | mpan2 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  +  1 )  ∈  ℝ+ ) | 
						
							| 164 | 163 | relogcld | ⊢ ( 𝑥  ∈  ℝ+  →  ( log ‘ ( 𝑥  +  1 ) )  ∈  ℝ ) | 
						
							| 165 | 164 13 | resubcld | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( log ‘ ( 𝑥  +  1 ) )  −  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 166 | 7 | nn0red | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 167 |  | 1red | ⊢ ( 𝑥  ∈  ℝ+  →  1  ∈  ℝ ) | 
						
							| 168 |  | flle | ⊢ ( 𝑥  ∈  ℝ  →  ( ⌊ ‘ 𝑥 )  ≤  𝑥 ) | 
						
							| 169 | 1 168 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ⌊ ‘ 𝑥 )  ≤  𝑥 ) | 
						
							| 170 | 166 1 167 169 | leadd1dd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ⌊ ‘ 𝑥 )  +  1 )  ≤  ( 𝑥  +  1 ) ) | 
						
							| 171 | 10 163 | logled | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ⌊ ‘ 𝑥 )  +  1 )  ≤  ( 𝑥  +  1 )  ↔  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ≤  ( log ‘ ( 𝑥  +  1 ) ) ) ) | 
						
							| 172 | 170 171 | mpbid | ⊢ ( 𝑥  ∈  ℝ+  →  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  ≤  ( log ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 173 | 11 164 13 172 | lesub1dd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) )  ≤  ( ( log ‘ ( 𝑥  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) | 
						
							| 174 |  | logdifbnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( log ‘ ( 𝑥  +  1 ) )  −  ( log ‘ 𝑥 ) )  ≤  ( 1  /  𝑥 ) ) | 
						
							| 175 | 160 165 158 173 174 | letrd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) )  ≤  ( 1  /  𝑥 ) ) | 
						
							| 176 | 175 | ad2antrl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) )  ≤  ( 1  /  𝑥 ) ) | 
						
							| 177 |  | fllep1 | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ≤  ( ( ⌊ ‘ 𝑥 )  +  1 ) ) | 
						
							| 178 | 1 177 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ≤  ( ( ⌊ ‘ 𝑥 )  +  1 ) ) | 
						
							| 179 |  | logleb | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( ( ⌊ ‘ 𝑥 )  +  1 )  ∈  ℝ+ )  →  ( 𝑥  ≤  ( ( ⌊ ‘ 𝑥 )  +  1 )  ↔  ( log ‘ 𝑥 )  ≤  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) ) | 
						
							| 180 | 10 179 | mpdan | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ≤  ( ( ⌊ ‘ 𝑥 )  +  1 )  ↔  ( log ‘ 𝑥 )  ≤  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) ) | 
						
							| 181 | 178 180 | mpbid | ⊢ ( 𝑥  ∈  ℝ+  →  ( log ‘ 𝑥 )  ≤  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) | 
						
							| 182 | 11 13 | subge0d | ⊢ ( 𝑥  ∈  ℝ+  →  ( 0  ≤  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) )  ↔  ( log ‘ 𝑥 )  ≤  ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) ) ) ) | 
						
							| 183 | 181 182 | mpbird | ⊢ ( 𝑥  ∈  ℝ+  →  0  ≤  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) | 
						
							| 184 | 183 | ad2antrl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  0  ≤  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) | 
						
							| 185 | 153 154 156 159 161 176 184 | rlimsqz2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0 ) | 
						
							| 186 |  | rlimo1 | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0  →  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 187 | 185 186 | syl | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 188 |  | o1mul | ⊢ ( ( ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ∈  𝑂(1)  ∧  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) )  →  ( ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ∘f   ·  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 189 | 152 187 188 | sylancr | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ∘f   ·  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 190 | 151 189 | eqeltrrd | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 191 |  | nnrp | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ+ ) | 
						
							| 192 | 191 | ssriv | ⊢ ℕ  ⊆  ℝ+ | 
						
							| 193 | 192 | a1i | ⊢ ( ⊤  →  ℕ  ⊆  ℝ+ ) | 
						
							| 194 | 193 | sselda | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℝ+ ) | 
						
							| 195 | 194 31 | syl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 196 |  | chpo1ub | ⊢ ( 𝑛  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑛 )  /  𝑛 ) )  ∈  𝑂(1) | 
						
							| 197 | 196 | a1i | ⊢ ( ⊤  →  ( 𝑛  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑛 )  /  𝑛 ) )  ∈  𝑂(1) ) | 
						
							| 198 |  | rerpdivcl | ⊢ ( ( ( ψ ‘ 𝑛 )  ∈  ℝ  ∧  𝑛  ∈  ℝ+ )  →  ( ( ψ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 199 | 29 198 | mpancom | ⊢ ( 𝑛  ∈  ℝ+  →  ( ( ψ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 200 | 199 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℝ+ )  →  ( ( ψ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 201 | 31 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℝ+ )  →  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 202 |  | rpreccl | ⊢ ( 𝑛  ∈  ℝ+  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 203 | 202 | rpred | ⊢ ( 𝑛  ∈  ℝ+  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 204 |  | chpge0 | ⊢ ( 𝑛  ∈  ℝ  →  0  ≤  ( ψ ‘ 𝑛 ) ) | 
						
							| 205 | 27 204 | syl | ⊢ ( 𝑛  ∈  ℝ+  →  0  ≤  ( ψ ‘ 𝑛 ) ) | 
						
							| 206 |  | logdifbnd | ⊢ ( 𝑛  ∈  ℝ+  →  ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ≤  ( 1  /  𝑛 ) ) | 
						
							| 207 | 26 203 29 205 206 | lemul1ad | ⊢ ( 𝑛  ∈  ℝ+  →  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  ≤  ( ( 1  /  𝑛 )  ·  ( ψ ‘ 𝑛 ) ) ) | 
						
							| 208 | 27 | lep1d | ⊢ ( 𝑛  ∈  ℝ+  →  𝑛  ≤  ( 𝑛  +  1 ) ) | 
						
							| 209 |  | logleb | ⊢ ( ( 𝑛  ∈  ℝ+  ∧  ( 𝑛  +  1 )  ∈  ℝ+ )  →  ( 𝑛  ≤  ( 𝑛  +  1 )  ↔  ( log ‘ 𝑛 )  ≤  ( log ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 210 | 23 209 | mpdan | ⊢ ( 𝑛  ∈  ℝ+  →  ( 𝑛  ≤  ( 𝑛  +  1 )  ↔  ( log ‘ 𝑛 )  ≤  ( log ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 211 | 208 210 | mpbid | ⊢ ( 𝑛  ∈  ℝ+  →  ( log ‘ 𝑛 )  ≤  ( log ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 212 | 24 25 | subge0d | ⊢ ( 𝑛  ∈  ℝ+  →  ( 0  ≤  ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ↔  ( log ‘ 𝑛 )  ≤  ( log ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 213 | 211 212 | mpbird | ⊢ ( 𝑛  ∈  ℝ+  →  0  ≤  ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) ) ) | 
						
							| 214 | 26 29 213 205 | mulge0d | ⊢ ( 𝑛  ∈  ℝ+  →  0  ≤  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) ) | 
						
							| 215 | 30 214 | absidd | ⊢ ( 𝑛  ∈  ℝ+  →  ( abs ‘ ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  =  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) ) | 
						
							| 216 |  | rpregt0 | ⊢ ( 𝑛  ∈  ℝ+  →  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) ) | 
						
							| 217 |  | divge0 | ⊢ ( ( ( ( ψ ‘ 𝑛 )  ∈  ℝ  ∧  0  ≤  ( ψ ‘ 𝑛 ) )  ∧  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) )  →  0  ≤  ( ( ψ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 218 | 29 205 216 217 | syl21anc | ⊢ ( 𝑛  ∈  ℝ+  →  0  ≤  ( ( ψ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 219 | 199 218 | absidd | ⊢ ( 𝑛  ∈  ℝ+  →  ( abs ‘ ( ( ψ ‘ 𝑛 )  /  𝑛 ) )  =  ( ( ψ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 220 | 29 | recnd | ⊢ ( 𝑛  ∈  ℝ+  →  ( ψ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 221 |  | rpcn | ⊢ ( 𝑛  ∈  ℝ+  →  𝑛  ∈  ℂ ) | 
						
							| 222 |  | rpne0 | ⊢ ( 𝑛  ∈  ℝ+  →  𝑛  ≠  0 ) | 
						
							| 223 | 220 221 222 | divrec2d | ⊢ ( 𝑛  ∈  ℝ+  →  ( ( ψ ‘ 𝑛 )  /  𝑛 )  =  ( ( 1  /  𝑛 )  ·  ( ψ ‘ 𝑛 ) ) ) | 
						
							| 224 | 219 223 | eqtrd | ⊢ ( 𝑛  ∈  ℝ+  →  ( abs ‘ ( ( ψ ‘ 𝑛 )  /  𝑛 ) )  =  ( ( 1  /  𝑛 )  ·  ( ψ ‘ 𝑛 ) ) ) | 
						
							| 225 | 207 215 224 | 3brtr4d | ⊢ ( 𝑛  ∈  ℝ+  →  ( abs ‘ ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  ≤  ( abs ‘ ( ( ψ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 226 | 225 | ad2antrl | ⊢ ( ( ⊤  ∧  ( 𝑛  ∈  ℝ+  ∧  1  ≤  𝑛 ) )  →  ( abs ‘ ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  ≤  ( abs ‘ ( ( ψ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 227 | 154 197 200 201 226 | o1le | ⊢ ( ⊤  →  ( 𝑛  ∈  ℝ+  ↦  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  ∈  𝑂(1) ) | 
						
							| 228 | 193 227 | o1res2 | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) ) )  ∈  𝑂(1) ) | 
						
							| 229 | 195 228 | o1fsum | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 230 | 141 142 190 229 | o1sub2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  ·  ( ( log ‘ ( ( ⌊ ‘ 𝑥 )  +  1 ) )  −  ( log ‘ 𝑥 ) ) )  −  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛  +  1 ) )  −  ( log ‘ 𝑛 ) )  ·  ( ψ ‘ 𝑛 ) )  /  𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 231 | 140 230 | eqeltrrid | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 232 | 231 | mptru | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  −  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  𝑥 ) )  ∈  𝑂(1) |