| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 2 |  | chpcl |  |-  ( x e. RR -> ( psi ` x ) e. RR ) | 
						
							| 3 | 1 2 | syl |  |-  ( x e. RR+ -> ( psi ` x ) e. RR ) | 
						
							| 4 | 3 | recnd |  |-  ( x e. RR+ -> ( psi ` x ) e. CC ) | 
						
							| 5 |  | rprege0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 6 |  | flge0nn0 |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 7 | 5 6 | syl |  |-  ( x e. RR+ -> ( |_ ` x ) e. NN0 ) | 
						
							| 8 |  | nn0p1nn |  |-  ( ( |_ ` x ) e. NN0 -> ( ( |_ ` x ) + 1 ) e. NN ) | 
						
							| 9 | 7 8 | syl |  |-  ( x e. RR+ -> ( ( |_ ` x ) + 1 ) e. NN ) | 
						
							| 10 | 9 | nnrpd |  |-  ( x e. RR+ -> ( ( |_ ` x ) + 1 ) e. RR+ ) | 
						
							| 11 | 10 | relogcld |  |-  ( x e. RR+ -> ( log ` ( ( |_ ` x ) + 1 ) ) e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( x e. RR+ -> ( log ` ( ( |_ ` x ) + 1 ) ) e. CC ) | 
						
							| 13 |  | relogcl |  |-  ( x e. RR+ -> ( log ` x ) e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( x e. RR+ -> ( log ` x ) e. CC ) | 
						
							| 15 | 12 14 | subcld |  |-  ( x e. RR+ -> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) e. CC ) | 
						
							| 16 | 4 15 | mulcld |  |-  ( x e. RR+ -> ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) e. CC ) | 
						
							| 17 |  | fzfid |  |-  ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 18 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 19 | 18 | adantl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 20 | 19 | nnrpd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 21 |  | 1rp |  |-  1 e. RR+ | 
						
							| 22 |  | rpaddcl |  |-  ( ( n e. RR+ /\ 1 e. RR+ ) -> ( n + 1 ) e. RR+ ) | 
						
							| 23 | 21 22 | mpan2 |  |-  ( n e. RR+ -> ( n + 1 ) e. RR+ ) | 
						
							| 24 | 23 | relogcld |  |-  ( n e. RR+ -> ( log ` ( n + 1 ) ) e. RR ) | 
						
							| 25 |  | relogcl |  |-  ( n e. RR+ -> ( log ` n ) e. RR ) | 
						
							| 26 | 24 25 | resubcld |  |-  ( n e. RR+ -> ( ( log ` ( n + 1 ) ) - ( log ` n ) ) e. RR ) | 
						
							| 27 |  | rpre |  |-  ( n e. RR+ -> n e. RR ) | 
						
							| 28 |  | chpcl |  |-  ( n e. RR -> ( psi ` n ) e. RR ) | 
						
							| 29 | 27 28 | syl |  |-  ( n e. RR+ -> ( psi ` n ) e. RR ) | 
						
							| 30 | 26 29 | remulcld |  |-  ( n e. RR+ -> ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) e. RR ) | 
						
							| 31 | 30 | recnd |  |-  ( n e. RR+ -> ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) e. CC ) | 
						
							| 32 | 20 31 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) e. CC ) | 
						
							| 33 | 17 32 | fsumcl |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) e. CC ) | 
						
							| 34 |  | rpcnne0 |  |-  ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 35 |  | divsubdir |  |-  ( ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) e. CC /\ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) / x ) = ( ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) / x ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) / x ) ) ) | 
						
							| 36 | 16 33 34 35 | syl3anc |  |-  ( x e. RR+ -> ( ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) / x ) = ( ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) / x ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) / x ) ) ) | 
						
							| 37 | 4 12 | mulcld |  |-  ( x e. RR+ -> ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) e. CC ) | 
						
							| 38 | 4 14 | mulcld |  |-  ( x e. RR+ -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) | 
						
							| 39 | 37 38 33 | sub32d |  |-  ( x e. RR+ -> ( ( ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) = ( ( ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) | 
						
							| 40 | 4 12 14 | subdid |  |-  ( x e. RR+ -> ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) = ( ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( x e. RR+ -> ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) = ( ( ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) ) | 
						
							| 42 |  | fveq2 |  |-  ( m = n -> ( log ` m ) = ( log ` n ) ) | 
						
							| 43 |  | fvoveq1 |  |-  ( m = n -> ( psi ` ( m - 1 ) ) = ( psi ` ( n - 1 ) ) ) | 
						
							| 44 | 42 43 | jca |  |-  ( m = n -> ( ( log ` m ) = ( log ` n ) /\ ( psi ` ( m - 1 ) ) = ( psi ` ( n - 1 ) ) ) ) | 
						
							| 45 |  | fveq2 |  |-  ( m = ( n + 1 ) -> ( log ` m ) = ( log ` ( n + 1 ) ) ) | 
						
							| 46 |  | fvoveq1 |  |-  ( m = ( n + 1 ) -> ( psi ` ( m - 1 ) ) = ( psi ` ( ( n + 1 ) - 1 ) ) ) | 
						
							| 47 | 45 46 | jca |  |-  ( m = ( n + 1 ) -> ( ( log ` m ) = ( log ` ( n + 1 ) ) /\ ( psi ` ( m - 1 ) ) = ( psi ` ( ( n + 1 ) - 1 ) ) ) ) | 
						
							| 48 |  | fveq2 |  |-  ( m = 1 -> ( log ` m ) = ( log ` 1 ) ) | 
						
							| 49 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 50 | 48 49 | eqtrdi |  |-  ( m = 1 -> ( log ` m ) = 0 ) | 
						
							| 51 |  | oveq1 |  |-  ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) | 
						
							| 52 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 53 | 51 52 | eqtrdi |  |-  ( m = 1 -> ( m - 1 ) = 0 ) | 
						
							| 54 | 53 | fveq2d |  |-  ( m = 1 -> ( psi ` ( m - 1 ) ) = ( psi ` 0 ) ) | 
						
							| 55 |  | 2pos |  |-  0 < 2 | 
						
							| 56 |  | 0re |  |-  0 e. RR | 
						
							| 57 |  | chpeq0 |  |-  ( 0 e. RR -> ( ( psi ` 0 ) = 0 <-> 0 < 2 ) ) | 
						
							| 58 | 56 57 | ax-mp |  |-  ( ( psi ` 0 ) = 0 <-> 0 < 2 ) | 
						
							| 59 | 55 58 | mpbir |  |-  ( psi ` 0 ) = 0 | 
						
							| 60 | 54 59 | eqtrdi |  |-  ( m = 1 -> ( psi ` ( m - 1 ) ) = 0 ) | 
						
							| 61 | 50 60 | jca |  |-  ( m = 1 -> ( ( log ` m ) = 0 /\ ( psi ` ( m - 1 ) ) = 0 ) ) | 
						
							| 62 |  | fveq2 |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( log ` m ) = ( log ` ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 63 |  | fvoveq1 |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( psi ` ( m - 1 ) ) = ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) | 
						
							| 64 | 62 63 | jca |  |-  ( m = ( ( |_ ` x ) + 1 ) -> ( ( log ` m ) = ( log ` ( ( |_ ` x ) + 1 ) ) /\ ( psi ` ( m - 1 ) ) = ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) | 
						
							| 65 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 66 | 9 65 | eleqtrdi |  |-  ( x e. RR+ -> ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 67 |  | elfznn |  |-  ( m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) -> m e. NN ) | 
						
							| 68 | 67 | adantl |  |-  ( ( x e. RR+ /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. NN ) | 
						
							| 69 | 68 | nnrpd |  |-  ( ( x e. RR+ /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. RR+ ) | 
						
							| 70 | 69 | relogcld |  |-  ( ( x e. RR+ /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( log ` m ) e. RR ) | 
						
							| 71 | 70 | recnd |  |-  ( ( x e. RR+ /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( log ` m ) e. CC ) | 
						
							| 72 | 68 | nnred |  |-  ( ( x e. RR+ /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. RR ) | 
						
							| 73 |  | peano2rem |  |-  ( m e. RR -> ( m - 1 ) e. RR ) | 
						
							| 74 | 72 73 | syl |  |-  ( ( x e. RR+ /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( m - 1 ) e. RR ) | 
						
							| 75 |  | chpcl |  |-  ( ( m - 1 ) e. RR -> ( psi ` ( m - 1 ) ) e. RR ) | 
						
							| 76 | 74 75 | syl |  |-  ( ( x e. RR+ /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( psi ` ( m - 1 ) ) e. RR ) | 
						
							| 77 | 76 | recnd |  |-  ( ( x e. RR+ /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( psi ` ( m - 1 ) ) e. CC ) | 
						
							| 78 | 44 47 61 64 66 71 77 | fsumparts |  |-  ( x e. RR+ -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( log ` n ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) ) = ( ( ( ( log ` ( ( |_ ` x ) + 1 ) ) x. ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 0 x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` ( ( n + 1 ) - 1 ) ) ) ) ) | 
						
							| 79 | 7 | nn0zd |  |-  ( x e. RR+ -> ( |_ ` x ) e. ZZ ) | 
						
							| 80 |  | fzval3 |  |-  ( ( |_ ` x ) e. ZZ -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 81 | 79 80 | syl |  |-  ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 82 | 81 | eqcomd |  |-  ( x e. RR+ -> ( 1 ..^ ( ( |_ ` x ) + 1 ) ) = ( 1 ... ( |_ ` x ) ) ) | 
						
							| 83 |  | nnm1nn0 |  |-  ( n e. NN -> ( n - 1 ) e. NN0 ) | 
						
							| 84 | 19 83 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. NN0 ) | 
						
							| 85 | 84 | nn0red |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. RR ) | 
						
							| 86 |  | chpcl |  |-  ( ( n - 1 ) e. RR -> ( psi ` ( n - 1 ) ) e. RR ) | 
						
							| 87 | 85 86 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( n - 1 ) ) e. RR ) | 
						
							| 88 | 87 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( n - 1 ) ) e. CC ) | 
						
							| 89 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 90 | 19 89 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 91 | 90 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 92 | 19 | nncnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 93 |  | ax-1cn |  |-  1 e. CC | 
						
							| 94 |  | pncan |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 95 | 92 93 94 | sylancl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 96 |  | npcan |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 97 | 92 93 96 | sylancl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 98 | 95 97 | eqtr4d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) = ( ( n - 1 ) + 1 ) ) | 
						
							| 99 | 98 | fveq2d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n + 1 ) - 1 ) ) = ( psi ` ( ( n - 1 ) + 1 ) ) ) | 
						
							| 100 |  | chpp1 |  |-  ( ( n - 1 ) e. NN0 -> ( psi ` ( ( n - 1 ) + 1 ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` ( ( n - 1 ) + 1 ) ) ) ) | 
						
							| 101 | 84 100 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n - 1 ) + 1 ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` ( ( n - 1 ) + 1 ) ) ) ) | 
						
							| 102 | 97 | fveq2d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` ( ( n - 1 ) + 1 ) ) = ( Lam ` n ) ) | 
						
							| 103 | 102 | oveq2d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( n - 1 ) ) + ( Lam ` ( ( n - 1 ) + 1 ) ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` n ) ) ) | 
						
							| 104 | 99 101 103 | 3eqtrd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n + 1 ) - 1 ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` n ) ) ) | 
						
							| 105 | 88 91 104 | mvrladdd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) = ( Lam ` n ) ) | 
						
							| 106 | 105 | oveq2d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) ) = ( ( log ` n ) x. ( Lam ` n ) ) ) | 
						
							| 107 | 20 | relogcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 108 | 107 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) | 
						
							| 109 | 91 108 | mulcomd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( log ` n ) ) = ( ( log ` n ) x. ( Lam ` n ) ) ) | 
						
							| 110 | 106 109 | eqtr4d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) ) = ( ( Lam ` n ) x. ( log ` n ) ) ) | 
						
							| 111 | 82 110 | sumeq12rdv |  |-  ( x e. RR+ -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( log ` n ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) ) | 
						
							| 112 | 7 | nn0cnd |  |-  ( x e. RR+ -> ( |_ ` x ) e. CC ) | 
						
							| 113 |  | pncan |  |-  ( ( ( |_ ` x ) e. CC /\ 1 e. CC ) -> ( ( ( |_ ` x ) + 1 ) - 1 ) = ( |_ ` x ) ) | 
						
							| 114 | 112 93 113 | sylancl |  |-  ( x e. RR+ -> ( ( ( |_ ` x ) + 1 ) - 1 ) = ( |_ ` x ) ) | 
						
							| 115 | 114 | fveq2d |  |-  ( x e. RR+ -> ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( psi ` ( |_ ` x ) ) ) | 
						
							| 116 |  | chpfl |  |-  ( x e. RR -> ( psi ` ( |_ ` x ) ) = ( psi ` x ) ) | 
						
							| 117 | 1 116 | syl |  |-  ( x e. RR+ -> ( psi ` ( |_ ` x ) ) = ( psi ` x ) ) | 
						
							| 118 | 115 117 | eqtrd |  |-  ( x e. RR+ -> ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( psi ` x ) ) | 
						
							| 119 | 118 | oveq2d |  |-  ( x e. RR+ -> ( ( log ` ( ( |_ ` x ) + 1 ) ) x. ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) = ( ( log ` ( ( |_ ` x ) + 1 ) ) x. ( psi ` x ) ) ) | 
						
							| 120 | 12 4 | mulcomd |  |-  ( x e. RR+ -> ( ( log ` ( ( |_ ` x ) + 1 ) ) x. ( psi ` x ) ) = ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 121 | 119 120 | eqtrd |  |-  ( x e. RR+ -> ( ( log ` ( ( |_ ` x ) + 1 ) ) x. ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) = ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 122 |  | 0cn |  |-  0 e. CC | 
						
							| 123 | 122 | mul01i |  |-  ( 0 x. 0 ) = 0 | 
						
							| 124 | 123 | a1i |  |-  ( x e. RR+ -> ( 0 x. 0 ) = 0 ) | 
						
							| 125 | 121 124 | oveq12d |  |-  ( x e. RR+ -> ( ( ( log ` ( ( |_ ` x ) + 1 ) ) x. ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 0 x. 0 ) ) = ( ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) - 0 ) ) | 
						
							| 126 | 37 | subid1d |  |-  ( x e. RR+ -> ( ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) - 0 ) = ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 127 | 125 126 | eqtrd |  |-  ( x e. RR+ -> ( ( ( log ` ( ( |_ ` x ) + 1 ) ) x. ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 0 x. 0 ) ) = ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 128 | 95 | fveq2d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n + 1 ) - 1 ) ) = ( psi ` n ) ) | 
						
							| 129 | 128 | oveq2d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` ( ( n + 1 ) - 1 ) ) ) = ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) | 
						
							| 130 | 82 129 | sumeq12rdv |  |-  ( x e. RR+ -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` ( ( n + 1 ) - 1 ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) | 
						
							| 131 | 127 130 | oveq12d |  |-  ( x e. RR+ -> ( ( ( ( log ` ( ( |_ ` x ) + 1 ) ) x. ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 0 x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` ( ( n + 1 ) - 1 ) ) ) ) = ( ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) ) | 
						
							| 132 | 78 111 131 | 3eqtr3d |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) = ( ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) ) | 
						
							| 133 | 132 | oveq1d |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) = ( ( ( ( psi ` x ) x. ( log ` ( ( |_ ` x ) + 1 ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) | 
						
							| 134 | 39 41 133 | 3eqtr4d |  |-  ( x e. RR+ -> ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) ) | 
						
							| 135 | 134 | oveq1d |  |-  ( x e. RR+ -> ( ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) / x ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) | 
						
							| 136 |  | div23 |  |-  ( ( ( psi ` x ) e. CC /\ ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) / x ) = ( ( ( psi ` x ) / x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) ) | 
						
							| 137 | 4 15 34 136 | syl3anc |  |-  ( x e. RR+ -> ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) / x ) = ( ( ( psi ` x ) / x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) ) | 
						
							| 138 | 137 | oveq1d |  |-  ( x e. RR+ -> ( ( ( ( psi ` x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) / x ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) / x ) ) = ( ( ( ( psi ` x ) / x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) / x ) ) ) | 
						
							| 139 | 36 135 138 | 3eqtr3rd |  |-  ( x e. RR+ -> ( ( ( ( psi ` x ) / x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) / x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) | 
						
							| 140 | 139 | mpteq2ia |  |-  ( x e. RR+ |-> ( ( ( ( psi ` x ) / x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) / x ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) | 
						
							| 141 |  | ovexd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) / x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) e. _V ) | 
						
							| 142 |  | ovexd |  |-  ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) / x ) e. _V ) | 
						
							| 143 |  | reex |  |-  RR e. _V | 
						
							| 144 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 145 | 143 144 | ssexi |  |-  RR+ e. _V | 
						
							| 146 | 145 | a1i |  |-  ( T. -> RR+ e. _V ) | 
						
							| 147 |  | ovexd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. _V ) | 
						
							| 148 | 15 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) e. CC ) | 
						
							| 149 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) = ( x e. RR+ |-> ( ( psi ` x ) / x ) ) ) | 
						
							| 150 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) = ( x e. RR+ |-> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) ) | 
						
							| 151 | 146 147 148 149 150 | offval2 |  |-  ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) oF x. ( x e. RR+ |-> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( psi ` x ) / x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) ) ) | 
						
							| 152 |  | chpo1ub |  |-  ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) | 
						
							| 153 |  | 0red |  |-  ( T. -> 0 e. RR ) | 
						
							| 154 |  | 1red |  |-  ( T. -> 1 e. RR ) | 
						
							| 155 |  | divrcnv |  |-  ( 1 e. CC -> ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 ) | 
						
							| 156 | 93 155 | mp1i |  |-  ( T. -> ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 ) | 
						
							| 157 |  | rpreccl |  |-  ( x e. RR+ -> ( 1 / x ) e. RR+ ) | 
						
							| 158 | 157 | rpred |  |-  ( x e. RR+ -> ( 1 / x ) e. RR ) | 
						
							| 159 | 158 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. RR ) | 
						
							| 160 | 11 13 | resubcld |  |-  ( x e. RR+ -> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) e. RR ) | 
						
							| 161 | 160 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) e. RR ) | 
						
							| 162 |  | rpaddcl |  |-  ( ( x e. RR+ /\ 1 e. RR+ ) -> ( x + 1 ) e. RR+ ) | 
						
							| 163 | 21 162 | mpan2 |  |-  ( x e. RR+ -> ( x + 1 ) e. RR+ ) | 
						
							| 164 | 163 | relogcld |  |-  ( x e. RR+ -> ( log ` ( x + 1 ) ) e. RR ) | 
						
							| 165 | 164 13 | resubcld |  |-  ( x e. RR+ -> ( ( log ` ( x + 1 ) ) - ( log ` x ) ) e. RR ) | 
						
							| 166 | 7 | nn0red |  |-  ( x e. RR+ -> ( |_ ` x ) e. RR ) | 
						
							| 167 |  | 1red |  |-  ( x e. RR+ -> 1 e. RR ) | 
						
							| 168 |  | flle |  |-  ( x e. RR -> ( |_ ` x ) <_ x ) | 
						
							| 169 | 1 168 | syl |  |-  ( x e. RR+ -> ( |_ ` x ) <_ x ) | 
						
							| 170 | 166 1 167 169 | leadd1dd |  |-  ( x e. RR+ -> ( ( |_ ` x ) + 1 ) <_ ( x + 1 ) ) | 
						
							| 171 | 10 163 | logled |  |-  ( x e. RR+ -> ( ( ( |_ ` x ) + 1 ) <_ ( x + 1 ) <-> ( log ` ( ( |_ ` x ) + 1 ) ) <_ ( log ` ( x + 1 ) ) ) ) | 
						
							| 172 | 170 171 | mpbid |  |-  ( x e. RR+ -> ( log ` ( ( |_ ` x ) + 1 ) ) <_ ( log ` ( x + 1 ) ) ) | 
						
							| 173 | 11 164 13 172 | lesub1dd |  |-  ( x e. RR+ -> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) <_ ( ( log ` ( x + 1 ) ) - ( log ` x ) ) ) | 
						
							| 174 |  | logdifbnd |  |-  ( x e. RR+ -> ( ( log ` ( x + 1 ) ) - ( log ` x ) ) <_ ( 1 / x ) ) | 
						
							| 175 | 160 165 158 173 174 | letrd |  |-  ( x e. RR+ -> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) <_ ( 1 / x ) ) | 
						
							| 176 | 175 | ad2antrl |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) <_ ( 1 / x ) ) | 
						
							| 177 |  | fllep1 |  |-  ( x e. RR -> x <_ ( ( |_ ` x ) + 1 ) ) | 
						
							| 178 | 1 177 | syl |  |-  ( x e. RR+ -> x <_ ( ( |_ ` x ) + 1 ) ) | 
						
							| 179 |  | logleb |  |-  ( ( x e. RR+ /\ ( ( |_ ` x ) + 1 ) e. RR+ ) -> ( x <_ ( ( |_ ` x ) + 1 ) <-> ( log ` x ) <_ ( log ` ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 180 | 10 179 | mpdan |  |-  ( x e. RR+ -> ( x <_ ( ( |_ ` x ) + 1 ) <-> ( log ` x ) <_ ( log ` ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 181 | 178 180 | mpbid |  |-  ( x e. RR+ -> ( log ` x ) <_ ( log ` ( ( |_ ` x ) + 1 ) ) ) | 
						
							| 182 | 11 13 | subge0d |  |-  ( x e. RR+ -> ( 0 <_ ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) <-> ( log ` x ) <_ ( log ` ( ( |_ ` x ) + 1 ) ) ) ) | 
						
							| 183 | 181 182 | mpbird |  |-  ( x e. RR+ -> 0 <_ ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) | 
						
							| 184 | 183 | ad2antrl |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) | 
						
							| 185 | 153 154 156 159 161 176 184 | rlimsqz2 |  |-  ( T. -> ( x e. RR+ |-> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) ~~>r 0 ) | 
						
							| 186 |  | rlimo1 |  |-  ( ( x e. RR+ |-> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) ~~>r 0 -> ( x e. RR+ |-> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 187 | 185 186 | syl |  |-  ( T. -> ( x e. RR+ |-> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 188 |  | o1mul |  |-  ( ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) /\ ( x e. RR+ |-> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) oF x. ( x e. RR+ |-> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 189 | 152 187 188 | sylancr |  |-  ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) oF x. ( x e. RR+ |-> ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 190 | 151 189 | eqeltrrd |  |-  ( T. -> ( x e. RR+ |-> ( ( ( psi ` x ) / x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 191 |  | nnrp |  |-  ( m e. NN -> m e. RR+ ) | 
						
							| 192 | 191 | ssriv |  |-  NN C_ RR+ | 
						
							| 193 | 192 | a1i |  |-  ( T. -> NN C_ RR+ ) | 
						
							| 194 | 193 | sselda |  |-  ( ( T. /\ n e. NN ) -> n e. RR+ ) | 
						
							| 195 | 194 31 | syl |  |-  ( ( T. /\ n e. NN ) -> ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) e. CC ) | 
						
							| 196 |  | chpo1ub |  |-  ( n e. RR+ |-> ( ( psi ` n ) / n ) ) e. O(1) | 
						
							| 197 | 196 | a1i |  |-  ( T. -> ( n e. RR+ |-> ( ( psi ` n ) / n ) ) e. O(1) ) | 
						
							| 198 |  | rerpdivcl |  |-  ( ( ( psi ` n ) e. RR /\ n e. RR+ ) -> ( ( psi ` n ) / n ) e. RR ) | 
						
							| 199 | 29 198 | mpancom |  |-  ( n e. RR+ -> ( ( psi ` n ) / n ) e. RR ) | 
						
							| 200 | 199 | adantl |  |-  ( ( T. /\ n e. RR+ ) -> ( ( psi ` n ) / n ) e. RR ) | 
						
							| 201 | 31 | adantl |  |-  ( ( T. /\ n e. RR+ ) -> ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) e. CC ) | 
						
							| 202 |  | rpreccl |  |-  ( n e. RR+ -> ( 1 / n ) e. RR+ ) | 
						
							| 203 | 202 | rpred |  |-  ( n e. RR+ -> ( 1 / n ) e. RR ) | 
						
							| 204 |  | chpge0 |  |-  ( n e. RR -> 0 <_ ( psi ` n ) ) | 
						
							| 205 | 27 204 | syl |  |-  ( n e. RR+ -> 0 <_ ( psi ` n ) ) | 
						
							| 206 |  | logdifbnd |  |-  ( n e. RR+ -> ( ( log ` ( n + 1 ) ) - ( log ` n ) ) <_ ( 1 / n ) ) | 
						
							| 207 | 26 203 29 205 206 | lemul1ad |  |-  ( n e. RR+ -> ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) <_ ( ( 1 / n ) x. ( psi ` n ) ) ) | 
						
							| 208 | 27 | lep1d |  |-  ( n e. RR+ -> n <_ ( n + 1 ) ) | 
						
							| 209 |  | logleb |  |-  ( ( n e. RR+ /\ ( n + 1 ) e. RR+ ) -> ( n <_ ( n + 1 ) <-> ( log ` n ) <_ ( log ` ( n + 1 ) ) ) ) | 
						
							| 210 | 23 209 | mpdan |  |-  ( n e. RR+ -> ( n <_ ( n + 1 ) <-> ( log ` n ) <_ ( log ` ( n + 1 ) ) ) ) | 
						
							| 211 | 208 210 | mpbid |  |-  ( n e. RR+ -> ( log ` n ) <_ ( log ` ( n + 1 ) ) ) | 
						
							| 212 | 24 25 | subge0d |  |-  ( n e. RR+ -> ( 0 <_ ( ( log ` ( n + 1 ) ) - ( log ` n ) ) <-> ( log ` n ) <_ ( log ` ( n + 1 ) ) ) ) | 
						
							| 213 | 211 212 | mpbird |  |-  ( n e. RR+ -> 0 <_ ( ( log ` ( n + 1 ) ) - ( log ` n ) ) ) | 
						
							| 214 | 26 29 213 205 | mulge0d |  |-  ( n e. RR+ -> 0 <_ ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) | 
						
							| 215 | 30 214 | absidd |  |-  ( n e. RR+ -> ( abs ` ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) = ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) | 
						
							| 216 |  | rpregt0 |  |-  ( n e. RR+ -> ( n e. RR /\ 0 < n ) ) | 
						
							| 217 |  | divge0 |  |-  ( ( ( ( psi ` n ) e. RR /\ 0 <_ ( psi ` n ) ) /\ ( n e. RR /\ 0 < n ) ) -> 0 <_ ( ( psi ` n ) / n ) ) | 
						
							| 218 | 29 205 216 217 | syl21anc |  |-  ( n e. RR+ -> 0 <_ ( ( psi ` n ) / n ) ) | 
						
							| 219 | 199 218 | absidd |  |-  ( n e. RR+ -> ( abs ` ( ( psi ` n ) / n ) ) = ( ( psi ` n ) / n ) ) | 
						
							| 220 | 29 | recnd |  |-  ( n e. RR+ -> ( psi ` n ) e. CC ) | 
						
							| 221 |  | rpcn |  |-  ( n e. RR+ -> n e. CC ) | 
						
							| 222 |  | rpne0 |  |-  ( n e. RR+ -> n =/= 0 ) | 
						
							| 223 | 220 221 222 | divrec2d |  |-  ( n e. RR+ -> ( ( psi ` n ) / n ) = ( ( 1 / n ) x. ( psi ` n ) ) ) | 
						
							| 224 | 219 223 | eqtrd |  |-  ( n e. RR+ -> ( abs ` ( ( psi ` n ) / n ) ) = ( ( 1 / n ) x. ( psi ` n ) ) ) | 
						
							| 225 | 207 215 224 | 3brtr4d |  |-  ( n e. RR+ -> ( abs ` ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) <_ ( abs ` ( ( psi ` n ) / n ) ) ) | 
						
							| 226 | 225 | ad2antrl |  |-  ( ( T. /\ ( n e. RR+ /\ 1 <_ n ) ) -> ( abs ` ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) <_ ( abs ` ( ( psi ` n ) / n ) ) ) | 
						
							| 227 | 154 197 200 201 226 | o1le |  |-  ( T. -> ( n e. RR+ |-> ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) e. O(1) ) | 
						
							| 228 | 193 227 | o1res2 |  |-  ( T. -> ( n e. NN |-> ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) ) e. O(1) ) | 
						
							| 229 | 195 228 | o1fsum |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) / x ) ) e. O(1) ) | 
						
							| 230 | 141 142 190 229 | o1sub2 |  |-  ( T. -> ( x e. RR+ |-> ( ( ( ( psi ` x ) / x ) x. ( ( log ` ( ( |_ ` x ) + 1 ) ) - ( log ` x ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( log ` ( n + 1 ) ) - ( log ` n ) ) x. ( psi ` n ) ) / x ) ) ) e. O(1) ) | 
						
							| 231 | 140 230 | eqeltrrid |  |-  ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) e. O(1) ) | 
						
							| 232 | 231 | mptru |  |-  ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( log ` n ) ) - ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) e. O(1) |