| Step |
Hyp |
Ref |
Expression |
| 1 |
|
o1fsum.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ 𝑉 ) |
| 2 |
|
o1fsum.2 |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ 𝐴 ) ∈ 𝑂(1) ) |
| 3 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → ℕ ⊆ ℝ ) |
| 5 |
1 2
|
o1mptrcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 6 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 7 |
4 5 6
|
elo1mpt2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ∈ 𝑂(1) ↔ ∃ 𝑐 ∈ ( 1 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ) |
| 8 |
2 7
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 1 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) |
| 9 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 10 |
9
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ℝ+ ⊆ ℝ ) |
| 11 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑛 → 𝐴 = ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐴 |
| 13 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐴 |
| 14 |
11 12 13
|
cbvsum |
⊢ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛 / 𝑘 ⦌ 𝐴 |
| 15 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 16 |
|
o1f |
⊢ ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ∈ 𝑂(1) → ( 𝑘 ∈ ℕ ↦ 𝐴 ) : dom ( 𝑘 ∈ ℕ ↦ 𝐴 ) ⟶ ℂ ) |
| 17 |
2 16
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ 𝐴 ) : dom ( 𝑘 ∈ ℕ ↦ 𝐴 ) ⟶ ℂ ) |
| 18 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑉 ) |
| 19 |
|
dmmptg |
⊢ ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ 𝑉 → dom ( 𝑘 ∈ ℕ ↦ 𝐴 ) = ℕ ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → dom ( 𝑘 ∈ ℕ ↦ 𝐴 ) = ℕ ) |
| 21 |
20
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) : dom ( 𝑘 ∈ ℕ ↦ 𝐴 ) ⟶ ℂ ↔ ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ℂ ) ) |
| 22 |
17 21
|
mpbid |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ℂ ) |
| 23 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ 𝐴 ) = ( 𝑘 ∈ ℕ ↦ 𝐴 ) |
| 24 |
23
|
fmpt |
⊢ ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ ↔ ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ℂ ) |
| 25 |
22 24
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ ) |
| 26 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ ) |
| 27 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 28 |
13
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ |
| 29 |
11
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 30 |
28 29
|
rspc |
⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 31 |
30
|
impcom |
⊢ ( ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 32 |
26 27 31
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 33 |
15 32
|
fsumcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 34 |
14 33
|
eqeltrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ∈ ℂ ) |
| 35 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
| 36 |
35
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 37 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
| 38 |
37
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 39 |
34 36 38
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ∈ ℂ ) |
| 40 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → 𝑐 ∈ ( 1 [,) +∞ ) ) |
| 41 |
|
1re |
⊢ 1 ∈ ℝ |
| 42 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑐 ∈ ( 1 [,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ 1 ≤ 𝑐 ) ) ) |
| 43 |
41 42
|
ax-mp |
⊢ ( 𝑐 ∈ ( 1 [,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ 1 ≤ 𝑐 ) ) |
| 44 |
40 43
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( 𝑐 ∈ ℝ ∧ 1 ≤ 𝑐 ) ) |
| 45 |
44
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → 𝑐 ∈ ℝ ) |
| 46 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∈ Fin ) |
| 47 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ∀ 𝑘 ∈ ℕ 𝐴 ∈ ℂ ) |
| 48 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) → 𝑛 ∈ ℕ ) |
| 49 |
47 48 31
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 50 |
49
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 51 |
46 50
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 52 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → 𝑚 ∈ ℝ ) |
| 53 |
51 52
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ∈ ℝ ) |
| 54 |
34 36 38
|
absdivd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) = ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / ( abs ‘ 𝑥 ) ) ) |
| 55 |
54
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) = ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / ( abs ‘ 𝑥 ) ) ) |
| 56 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 57 |
56
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 58 |
|
absid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( abs ‘ 𝑥 ) = 𝑥 ) |
| 59 |
57 58
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ 𝑥 ) = 𝑥 ) |
| 60 |
59
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / ( abs ‘ 𝑥 ) ) = ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / 𝑥 ) ) |
| 61 |
55 60
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) = ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / 𝑥 ) ) |
| 62 |
34
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ∈ ℂ ) |
| 63 |
62
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ∈ ℝ ) |
| 64 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 65 |
47 27 31
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 66 |
65
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 67 |
66
|
abscld |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 68 |
64 67
|
fsumrecl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 69 |
57
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 70 |
51
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 71 |
52
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑚 ∈ ℝ ) |
| 72 |
70 71
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ∈ ℝ ) |
| 73 |
69 72
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) ∈ ℝ ) |
| 74 |
14
|
fveq2i |
⊢ ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) = ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) |
| 75 |
64 66
|
fsumabs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 76 |
74 75
|
eqbrtrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 77 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 78 |
|
ssun2 |
⊢ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∪ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) |
| 79 |
|
flge1nn |
⊢ ( ( 𝑐 ∈ ℝ ∧ 1 ≤ 𝑐 ) → ( ⌊ ‘ 𝑐 ) ∈ ℕ ) |
| 80 |
44 79
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( ⌊ ‘ 𝑐 ) ∈ ℕ ) |
| 81 |
80
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑐 ) ∈ ℕ ) |
| 82 |
81
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑐 ) ∈ ℝ ) |
| 83 |
45
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑐 ∈ ℝ ) |
| 84 |
|
flle |
⊢ ( 𝑐 ∈ ℝ → ( ⌊ ‘ 𝑐 ) ≤ 𝑐 ) |
| 85 |
83 84
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑐 ) ≤ 𝑐 ) |
| 86 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑐 ≤ 𝑥 ) |
| 87 |
82 83 69 85 86
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑐 ) ≤ 𝑥 ) |
| 88 |
|
fznnfl |
⊢ ( 𝑥 ∈ ℝ → ( ( ⌊ ‘ 𝑐 ) ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( ( ⌊ ‘ 𝑐 ) ∈ ℕ ∧ ( ⌊ ‘ 𝑐 ) ≤ 𝑥 ) ) ) |
| 89 |
69 88
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑐 ) ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( ( ⌊ ‘ 𝑐 ) ∈ ℕ ∧ ( ⌊ ‘ 𝑐 ) ≤ 𝑥 ) ) ) |
| 90 |
81 87 89
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑐 ) ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 91 |
|
fzsplit |
⊢ ( ( ⌊ ‘ 𝑐 ) ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∪ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) |
| 92 |
90 91
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∪ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) |
| 93 |
78 92
|
sseqtrrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 94 |
93
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 95 |
65
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 96 |
95
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 97 |
94 96
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 98 |
77 97
|
fsumrecl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 99 |
69 70
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ∈ ℝ ) |
| 100 |
69 71
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 · 𝑚 ) ∈ ℝ ) |
| 101 |
70
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
| 102 |
101
|
mullidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 1 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 103 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 1 ∈ ℝ ) |
| 104 |
49
|
absge0d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ) → 0 ≤ ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 105 |
46 50 104
|
fsumge0 |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 106 |
51 105
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ∧ 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 107 |
106
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ∧ 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 108 |
44
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → 1 ≤ 𝑐 ) |
| 109 |
108
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 1 ≤ 𝑐 ) |
| 110 |
103 83 69 109 86
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 1 ≤ 𝑥 ) |
| 111 |
|
lemul1a |
⊢ ( ( ( 1 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ∧ 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) ∧ 1 ≤ 𝑥 ) → ( 1 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ≤ ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 112 |
103 69 107 110 111
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 1 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ≤ ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 113 |
102 112
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 114 |
|
hashcl |
⊢ ( ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ∈ ℕ0 ) |
| 115 |
|
nn0re |
⊢ ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ∈ ℕ0 → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 116 |
77 114 115
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 117 |
116 71
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) · 𝑚 ) ∈ ℝ ) |
| 118 |
71
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑚 ∈ ℝ ) |
| 119 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) |
| 120 |
81
|
peano2nnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℕ ) |
| 121 |
|
eluznn |
⊢ ( ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 122 |
120 121
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 123 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) |
| 124 |
83
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑐 ∈ ℝ ) |
| 125 |
|
reflcl |
⊢ ( 𝑐 ∈ ℝ → ( ⌊ ‘ 𝑐 ) ∈ ℝ ) |
| 126 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑐 ) ∈ ℝ → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℝ ) |
| 127 |
124 125 126
|
3syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℝ ) |
| 128 |
122
|
nnred |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑛 ∈ ℝ ) |
| 129 |
|
fllep1 |
⊢ ( 𝑐 ∈ ℝ → 𝑐 ≤ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) |
| 130 |
124 129
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑐 ≤ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) |
| 131 |
|
eluzle |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ≤ 𝑛 ) |
| 132 |
131
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ≤ 𝑛 ) |
| 133 |
124 127 128 130 132
|
letrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑐 ≤ 𝑛 ) |
| 134 |
|
nfv |
⊢ Ⅎ 𝑘 𝑐 ≤ 𝑛 |
| 135 |
|
nfcv |
⊢ Ⅎ 𝑘 abs |
| 136 |
135 13
|
nffv |
⊢ Ⅎ 𝑘 ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) |
| 137 |
|
nfcv |
⊢ Ⅎ 𝑘 ≤ |
| 138 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑚 |
| 139 |
136 137 138
|
nfbr |
⊢ Ⅎ 𝑘 ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 |
| 140 |
134 139
|
nfim |
⊢ Ⅎ 𝑘 ( 𝑐 ≤ 𝑛 → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) |
| 141 |
|
breq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑐 ≤ 𝑘 ↔ 𝑐 ≤ 𝑛 ) ) |
| 142 |
11
|
fveq2d |
⊢ ( 𝑘 = 𝑛 → ( abs ‘ 𝐴 ) = ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 143 |
142
|
breq1d |
⊢ ( 𝑘 = 𝑛 → ( ( abs ‘ 𝐴 ) ≤ 𝑚 ↔ ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) ) |
| 144 |
141 143
|
imbi12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ↔ ( 𝑐 ≤ 𝑛 → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) ) ) |
| 145 |
140 144
|
rspc |
⊢ ( 𝑛 ∈ ℕ → ( ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) → ( 𝑐 ≤ 𝑛 → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) ) ) |
| 146 |
122 123 133 145
|
syl3c |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) |
| 147 |
119 146
|
sylan2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ 𝑚 ) |
| 148 |
77 97 118 147
|
fsumle |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) 𝑚 ) |
| 149 |
71
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑚 ∈ ℂ ) |
| 150 |
|
fsumconst |
⊢ ( ( ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ∧ 𝑚 ∈ ℂ ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) 𝑚 = ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) · 𝑚 ) ) |
| 151 |
77 149 150
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) 𝑚 = ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) · 𝑚 ) ) |
| 152 |
148 151
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) · 𝑚 ) ) |
| 153 |
|
biidd |
⊢ ( 𝑛 = ( ( ⌊ ‘ 𝑐 ) + 1 ) → ( 0 ≤ 𝑚 ↔ 0 ≤ 𝑚 ) ) |
| 154 |
|
0red |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 0 ∈ ℝ ) |
| 155 |
47 30
|
mpan9 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ 𝑛 ∈ ℕ ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 156 |
155
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ℕ ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 157 |
122 156
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 158 |
157
|
abscld |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 159 |
71
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 𝑚 ∈ ℝ ) |
| 160 |
157
|
absge0d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 0 ≤ ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) |
| 161 |
154 158 159 160 146
|
letrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) → 0 ≤ 𝑚 ) |
| 162 |
161
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) 0 ≤ 𝑚 ) |
| 163 |
120
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℤ ) |
| 164 |
|
uzid |
⊢ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ℤ → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) |
| 165 |
163 164
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑐 ) + 1 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑐 ) + 1 ) ) ) |
| 166 |
153 162 165
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 0 ≤ 𝑚 ) |
| 167 |
|
reflcl |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 168 |
69 167
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 169 |
|
ssdomg |
⊢ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin → ( ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ≼ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ) |
| 170 |
64 93 169
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ≼ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 171 |
|
hashdomi |
⊢ ( ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ≼ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ≤ ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ) |
| 172 |
170 171
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ≤ ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ) |
| 173 |
|
flge0nn0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
| 174 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
| 175 |
57 173 174
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
| 176 |
172 175
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ≤ ( ⌊ ‘ 𝑥 ) ) |
| 177 |
|
flle |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
| 178 |
69 177
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
| 179 |
116 168 69 176 178
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ≤ 𝑥 ) |
| 180 |
116 69 71 166 179
|
lemul1ad |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ♯ ‘ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) · 𝑚 ) ≤ ( 𝑥 · 𝑚 ) ) |
| 181 |
98 117 100 152 180
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ ( 𝑥 · 𝑚 ) ) |
| 182 |
70 98 99 100 113 181
|
le2addd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ≤ ( ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) + ( 𝑥 · 𝑚 ) ) ) |
| 183 |
|
ltp1 |
⊢ ( ( ⌊ ‘ 𝑐 ) ∈ ℝ → ( ⌊ ‘ 𝑐 ) < ( ( ⌊ ‘ 𝑐 ) + 1 ) ) |
| 184 |
|
fzdisj |
⊢ ( ( ⌊ ‘ 𝑐 ) < ( ( ⌊ ‘ 𝑐 ) + 1 ) → ( ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∩ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) = ∅ ) |
| 185 |
82 183 184
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( 1 ... ( ⌊ ‘ 𝑐 ) ) ∩ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) = ∅ ) |
| 186 |
96
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
| 187 |
185 92 64 186
|
fsumsplit |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑐 ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) ) |
| 188 |
36
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 189 |
188 101 149
|
adddid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) = ( ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ) + ( 𝑥 · 𝑚 ) ) ) |
| 190 |
182 187 189
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) ≤ ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) ) |
| 191 |
63 68 73 76 190
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ≤ ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) ) |
| 192 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 193 |
192
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 194 |
|
ledivmul |
⊢ ( ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ∈ ℝ ∧ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / 𝑥 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ↔ ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ≤ ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) ) ) |
| 195 |
63 72 193 194
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / 𝑥 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ↔ ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) ≤ ( 𝑥 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) ) ) |
| 196 |
191 195
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 ) / 𝑥 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) |
| 197 |
61 196
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑐 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑐 ) ) ( abs ‘ ⦋ 𝑛 / 𝑘 ⦌ 𝐴 ) + 𝑚 ) ) |
| 198 |
10 39 45 53 197
|
elo1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) ∧ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ∈ 𝑂(1) ) |
| 199 |
198
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ℝ ) ) → ( ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ∈ 𝑂(1) ) ) |
| 200 |
199
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( 1 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑐 ≤ 𝑘 → ( abs ‘ 𝐴 ) ≤ 𝑚 ) → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ∈ 𝑂(1) ) ) |
| 201 |
8 200
|
mpd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 𝐴 / 𝑥 ) ) ∈ 𝑂(1) ) |