| Step |
Hyp |
Ref |
Expression |
| 1 |
|
o1fsum.1 |
|
| 2 |
|
o1fsum.2 |
|
| 3 |
|
nnssre |
|
| 4 |
3
|
a1i |
|
| 5 |
1 2
|
o1mptrcl |
|
| 6 |
|
1red |
|
| 7 |
4 5 6
|
elo1mpt2 |
|
| 8 |
2 7
|
mpbid |
|
| 9 |
|
rpssre |
|
| 10 |
9
|
a1i |
|
| 11 |
|
csbeq1a |
|
| 12 |
|
nfcv |
|
| 13 |
|
nfcsb1v |
|
| 14 |
11 12 13
|
cbvsum |
|
| 15 |
|
fzfid |
|
| 16 |
|
o1f |
|
| 17 |
2 16
|
syl |
|
| 18 |
1
|
ralrimiva |
|
| 19 |
|
dmmptg |
|
| 20 |
18 19
|
syl |
|
| 21 |
20
|
feq2d |
|
| 22 |
17 21
|
mpbid |
|
| 23 |
|
eqid |
|
| 24 |
23
|
fmpt |
|
| 25 |
22 24
|
sylibr |
|
| 26 |
25
|
ad3antrrr |
|
| 27 |
|
elfznn |
|
| 28 |
13
|
nfel1 |
|
| 29 |
11
|
eleq1d |
|
| 30 |
28 29
|
rspc |
|
| 31 |
30
|
impcom |
|
| 32 |
26 27 31
|
syl2an |
|
| 33 |
15 32
|
fsumcl |
|
| 34 |
14 33
|
eqeltrid |
|
| 35 |
|
rpcn |
|
| 36 |
35
|
adantl |
|
| 37 |
|
rpne0 |
|
| 38 |
37
|
adantl |
|
| 39 |
34 36 38
|
divcld |
|
| 40 |
|
simplrl |
|
| 41 |
|
1re |
|
| 42 |
|
elicopnf |
|
| 43 |
41 42
|
ax-mp |
|
| 44 |
40 43
|
sylib |
|
| 45 |
44
|
simpld |
|
| 46 |
|
fzfid |
|
| 47 |
25
|
ad2antrr |
|
| 48 |
|
elfznn |
|
| 49 |
47 48 31
|
syl2an |
|
| 50 |
49
|
abscld |
|
| 51 |
46 50
|
fsumrecl |
|
| 52 |
|
simplrr |
|
| 53 |
51 52
|
readdcld |
|
| 54 |
34 36 38
|
absdivd |
|
| 55 |
54
|
adantrr |
|
| 56 |
|
rprege0 |
|
| 57 |
56
|
ad2antrl |
|
| 58 |
|
absid |
|
| 59 |
57 58
|
syl |
|
| 60 |
59
|
oveq2d |
|
| 61 |
55 60
|
eqtrd |
|
| 62 |
34
|
adantrr |
|
| 63 |
62
|
abscld |
|
| 64 |
|
fzfid |
|
| 65 |
47 27 31
|
syl2an |
|
| 66 |
65
|
adantlr |
|
| 67 |
66
|
abscld |
|
| 68 |
64 67
|
fsumrecl |
|
| 69 |
57
|
simpld |
|
| 70 |
51
|
adantr |
|
| 71 |
52
|
adantr |
|
| 72 |
70 71
|
readdcld |
|
| 73 |
69 72
|
remulcld |
|
| 74 |
14
|
fveq2i |
|
| 75 |
64 66
|
fsumabs |
|
| 76 |
74 75
|
eqbrtrid |
|
| 77 |
|
fzfid |
|
| 78 |
|
ssun2 |
|
| 79 |
|
flge1nn |
|
| 80 |
44 79
|
syl |
|
| 81 |
80
|
adantr |
|
| 82 |
81
|
nnred |
|
| 83 |
45
|
adantr |
|
| 84 |
|
flle |
|
| 85 |
83 84
|
syl |
|
| 86 |
|
simprr |
|
| 87 |
82 83 69 85 86
|
letrd |
|
| 88 |
|
fznnfl |
|
| 89 |
69 88
|
syl |
|
| 90 |
81 87 89
|
mpbir2and |
|
| 91 |
|
fzsplit |
|
| 92 |
90 91
|
syl |
|
| 93 |
78 92
|
sseqtrrid |
|
| 94 |
93
|
sselda |
|
| 95 |
65
|
abscld |
|
| 96 |
95
|
adantlr |
|
| 97 |
94 96
|
syldan |
|
| 98 |
77 97
|
fsumrecl |
|
| 99 |
69 70
|
remulcld |
|
| 100 |
69 71
|
remulcld |
|
| 101 |
70
|
recnd |
|
| 102 |
101
|
mullidd |
|
| 103 |
|
1red |
|
| 104 |
49
|
absge0d |
|
| 105 |
46 50 104
|
fsumge0 |
|
| 106 |
51 105
|
jca |
|
| 107 |
106
|
adantr |
|
| 108 |
44
|
simprd |
|
| 109 |
108
|
adantr |
|
| 110 |
103 83 69 109 86
|
letrd |
|
| 111 |
|
lemul1a |
|
| 112 |
103 69 107 110 111
|
syl31anc |
|
| 113 |
102 112
|
eqbrtrrd |
|
| 114 |
|
hashcl |
|
| 115 |
|
nn0re |
|
| 116 |
77 114 115
|
3syl |
|
| 117 |
116 71
|
remulcld |
|
| 118 |
71
|
adantr |
|
| 119 |
|
elfzuz |
|
| 120 |
81
|
peano2nnd |
|
| 121 |
|
eluznn |
|
| 122 |
120 121
|
sylan |
|
| 123 |
|
simpllr |
|
| 124 |
83
|
adantr |
|
| 125 |
|
reflcl |
|
| 126 |
|
peano2re |
|
| 127 |
124 125 126
|
3syl |
|
| 128 |
122
|
nnred |
|
| 129 |
|
fllep1 |
|
| 130 |
124 129
|
syl |
|
| 131 |
|
eluzle |
|
| 132 |
131
|
adantl |
|
| 133 |
124 127 128 130 132
|
letrd |
|
| 134 |
|
nfv |
|
| 135 |
|
nfcv |
|
| 136 |
135 13
|
nffv |
|
| 137 |
|
nfcv |
|
| 138 |
|
nfcv |
|
| 139 |
136 137 138
|
nfbr |
|
| 140 |
134 139
|
nfim |
|
| 141 |
|
breq2 |
|
| 142 |
11
|
fveq2d |
|
| 143 |
142
|
breq1d |
|
| 144 |
141 143
|
imbi12d |
|
| 145 |
140 144
|
rspc |
|
| 146 |
122 123 133 145
|
syl3c |
|
| 147 |
119 146
|
sylan2 |
|
| 148 |
77 97 118 147
|
fsumle |
|
| 149 |
71
|
recnd |
|
| 150 |
|
fsumconst |
|
| 151 |
77 149 150
|
syl2anc |
|
| 152 |
148 151
|
breqtrd |
|
| 153 |
|
biidd |
|
| 154 |
|
0red |
|
| 155 |
47 30
|
mpan9 |
|
| 156 |
155
|
adantlr |
|
| 157 |
122 156
|
syldan |
|
| 158 |
157
|
abscld |
|
| 159 |
71
|
adantr |
|
| 160 |
157
|
absge0d |
|
| 161 |
154 158 159 160 146
|
letrd |
|
| 162 |
161
|
ralrimiva |
|
| 163 |
120
|
nnzd |
|
| 164 |
|
uzid |
|
| 165 |
163 164
|
syl |
|
| 166 |
153 162 165
|
rspcdva |
|
| 167 |
|
reflcl |
|
| 168 |
69 167
|
syl |
|
| 169 |
|
ssdomg |
|
| 170 |
64 93 169
|
sylc |
|
| 171 |
|
hashdomi |
|
| 172 |
170 171
|
syl |
|
| 173 |
|
flge0nn0 |
|
| 174 |
|
hashfz1 |
|
| 175 |
57 173 174
|
3syl |
|
| 176 |
172 175
|
breqtrd |
|
| 177 |
|
flle |
|
| 178 |
69 177
|
syl |
|
| 179 |
116 168 69 176 178
|
letrd |
|
| 180 |
116 69 71 166 179
|
lemul1ad |
|
| 181 |
98 117 100 152 180
|
letrd |
|
| 182 |
70 98 99 100 113 181
|
le2addd |
|
| 183 |
|
ltp1 |
|
| 184 |
|
fzdisj |
|
| 185 |
82 183 184
|
3syl |
|
| 186 |
96
|
recnd |
|
| 187 |
185 92 64 186
|
fsumsplit |
|
| 188 |
36
|
adantrr |
|
| 189 |
188 101 149
|
adddid |
|
| 190 |
182 187 189
|
3brtr4d |
|
| 191 |
63 68 73 76 190
|
letrd |
|
| 192 |
|
rpregt0 |
|
| 193 |
192
|
ad2antrl |
|
| 194 |
|
ledivmul |
|
| 195 |
63 72 193 194
|
syl3anc |
|
| 196 |
191 195
|
mpbird |
|
| 197 |
61 196
|
eqbrtrd |
|
| 198 |
10 39 45 53 197
|
elo1d |
|
| 199 |
198
|
ex |
|
| 200 |
199
|
rexlimdvva |
|
| 201 |
8 200
|
mpd |
|