| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selberglem1.t |
⊢ 𝑇 = ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / 𝑛 ) |
| 2 |
|
reex |
⊢ ℝ ∈ V |
| 3 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 4 |
2 3
|
ssexi |
⊢ ℝ+ ∈ V |
| 5 |
4
|
a1i |
⊢ ( ⊤ → ℝ+ ∈ V ) |
| 6 |
|
fzfid |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 7 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 8 |
7
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 9 |
|
mucl |
⊢ ( 𝑛 ∈ ℕ → ( μ ‘ 𝑛 ) ∈ ℤ ) |
| 10 |
8 9
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℤ ) |
| 11 |
10
|
zred |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℂ ) |
| 13 |
|
fzfid |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin ) |
| 14 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) → 𝑚 ∈ ℕ ) |
| 15 |
14
|
adantl |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 16 |
15
|
nnrpd |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
| 17 |
16
|
relogcld |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
| 18 |
17
|
resqcld |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( log ‘ 𝑚 ) ↑ 2 ) ∈ ℝ ) |
| 19 |
13 18
|
fsumrecl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) ∈ ℝ ) |
| 20 |
|
simplr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 21 |
19 20
|
rerpdivcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) ∈ ℝ ) |
| 22 |
21
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) ∈ ℂ ) |
| 23 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 24 |
7
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
| 25 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 26 |
23 24 25
|
syl2an |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 27 |
26
|
relogcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 28 |
27
|
resqcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) ∈ ℝ ) |
| 29 |
|
2re |
⊢ 2 ∈ ℝ |
| 30 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) → ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
| 31 |
29 27 30
|
sylancr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
| 32 |
|
resubcl |
⊢ ( ( 2 ∈ ℝ ∧ ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) → ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
| 33 |
29 31 32
|
sylancr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
| 34 |
28 33
|
readdcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℝ ) |
| 35 |
34 8
|
nndivred |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / 𝑛 ) ∈ ℝ ) |
| 36 |
1 35
|
eqeltrid |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑇 ∈ ℝ ) |
| 37 |
36
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑇 ∈ ℂ ) |
| 38 |
22 37
|
subcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ∈ ℂ ) |
| 39 |
12 38
|
mulcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ∈ ℂ ) |
| 40 |
6 39
|
fsumcl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ∈ ℂ ) |
| 41 |
12 37
|
mulcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) · 𝑇 ) ∈ ℂ ) |
| 42 |
6 41
|
fsumcl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) ∈ ℂ ) |
| 43 |
|
2cn |
⊢ 2 ∈ ℂ |
| 44 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 45 |
44
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 46 |
45
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 47 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( log ‘ 𝑥 ) ∈ ℂ ) → ( 2 · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 48 |
43 46 47
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 2 · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 49 |
42 48
|
subcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 50 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ) |
| 51 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) |
| 52 |
5 40 49 50 51
|
offval2 |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ∘f + ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) |
| 53 |
40 42 48
|
addsubassd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) ) − ( 2 · ( log ‘ 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) |
| 54 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 56 |
55
|
simpld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 57 |
11
|
adantr |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( μ ‘ 𝑛 ) ∈ ℝ ) |
| 58 |
57 18
|
remulcld |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ∈ ℝ ) |
| 59 |
13 58
|
fsumrecl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ∈ ℝ ) |
| 60 |
59
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ∈ ℂ ) |
| 61 |
55
|
simprd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 62 |
6 56 60 61
|
fsumdivc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) ) |
| 63 |
18
|
recnd |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( log ‘ 𝑚 ) ↑ 2 ) ∈ ℂ ) |
| 64 |
13 63
|
fsumcl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) ∈ ℂ ) |
| 65 |
55
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 66 |
|
divass |
⊢ ( ( ( μ ‘ 𝑛 ) ∈ ℂ ∧ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( ( μ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) = ( ( μ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) ) ) |
| 67 |
12 64 65 66
|
syl3anc |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) = ( ( μ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) ) ) |
| 68 |
13 12 63
|
fsummulc2 |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
| 69 |
68
|
oveq1d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) ) |
| 70 |
22 37
|
npcand |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) + 𝑇 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) ) |
| 71 |
70
|
oveq2d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) · ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) + 𝑇 ) ) = ( ( μ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) ) ) |
| 72 |
12 38 37
|
adddid |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) · ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) + 𝑇 ) ) = ( ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + ( ( μ ‘ 𝑛 ) · 𝑇 ) ) ) |
| 73 |
71 72
|
eqtr3d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) ) = ( ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + ( ( μ ‘ 𝑛 ) · 𝑇 ) ) ) |
| 74 |
67 69 73
|
3eqtr3d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) = ( ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + ( ( μ ‘ 𝑛 ) · 𝑇 ) ) ) |
| 75 |
74
|
sumeq2dv |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + ( ( μ ‘ 𝑛 ) · 𝑇 ) ) ) |
| 76 |
6 39 41
|
fsumadd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + ( ( μ ‘ 𝑛 ) · 𝑇 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) ) ) |
| 77 |
62 75 76
|
3eqtrrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) ) |
| 78 |
77
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) ) − ( 2 · ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) |
| 79 |
53 78
|
eqtr3d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) |
| 80 |
79
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) + ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) |
| 81 |
52 80
|
eqtrd |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ∘f + ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) |
| 82 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 83 |
6 28
|
fsumrecl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) ∈ ℝ ) |
| 84 |
83 23
|
rerpdivcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) ∈ ℝ ) |
| 85 |
84
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) ∈ ℂ ) |
| 86 |
|
2cnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 2 ∈ ℂ ) |
| 87 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 88 |
|
logexprlim |
⊢ ( 2 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) ) ⇝𝑟 ( ! ‘ 2 ) ) |
| 89 |
87 88
|
mp1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) ) ⇝𝑟 ( ! ‘ 2 ) ) |
| 90 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
| 91 |
|
rlimconst |
⊢ ( ( ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ 2 ) ⇝𝑟 2 ) |
| 92 |
3 90 91
|
sylancr |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ 2 ) ⇝𝑟 2 ) |
| 93 |
85 86 89 92
|
rlimadd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) ⇝𝑟 ( ( ! ‘ 2 ) + 2 ) ) |
| 94 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) ⇝𝑟 ( ( ! ‘ 2 ) + 2 ) → ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) ∈ 𝑂(1) ) |
| 95 |
93 94
|
syl |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) ∈ 𝑂(1) ) |
| 96 |
|
readdcl |
⊢ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ∈ ℝ ) |
| 97 |
84 29 96
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ∈ ℝ ) |
| 98 |
40
|
abscld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ∈ ℝ ) |
| 99 |
97
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ∈ ℂ ) |
| 100 |
99
|
abscld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) ∈ ℝ ) |
| 101 |
39
|
abscld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ∈ ℝ ) |
| 102 |
6 101
|
fsumrecl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ∈ ℝ ) |
| 103 |
6 39
|
fsumabs |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ) |
| 104 |
|
readdcl |
⊢ ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) ∈ ℝ ) |
| 105 |
28 29 104
|
sylancl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) ∈ ℝ ) |
| 106 |
105 20
|
rerpdivcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) / 𝑥 ) ∈ ℝ ) |
| 107 |
6 106
|
fsumrecl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) / 𝑥 ) ∈ ℝ ) |
| 108 |
38
|
abscld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ∈ ℝ ) |
| 109 |
12 38
|
absmuld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) = ( ( abs ‘ ( μ ‘ 𝑛 ) ) · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ) |
| 110 |
12
|
abscld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑛 ) ) ∈ ℝ ) |
| 111 |
|
1red |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
| 112 |
38
|
absge0d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) |
| 113 |
|
mule1 |
⊢ ( 𝑛 ∈ ℕ → ( abs ‘ ( μ ‘ 𝑛 ) ) ≤ 1 ) |
| 114 |
8 113
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑛 ) ) ≤ 1 ) |
| 115 |
110 111 108 112 114
|
lemul1ad |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( μ ‘ 𝑛 ) ) · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ ( 1 · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ) |
| 116 |
108
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ∈ ℂ ) |
| 117 |
116
|
mullidd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) = ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) |
| 118 |
115 117
|
breqtrd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( μ ‘ 𝑛 ) ) · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) |
| 119 |
109 118
|
eqbrtrd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) |
| 120 |
65
|
simpld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℂ ) |
| 121 |
120 38
|
absmuld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑥 · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ) |
| 122 |
120 22 37
|
subdid |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) = ( ( 𝑥 · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) ) − ( 𝑥 · 𝑇 ) ) ) |
| 123 |
65
|
simprd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ≠ 0 ) |
| 124 |
64 120 123
|
divcan2d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) ) |
| 125 |
34
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℂ ) |
| 126 |
8
|
nnrpd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 127 |
|
rpcnne0 |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
| 128 |
126 127
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
| 129 |
|
divass |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑥 · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) / 𝑛 ) = ( 𝑥 · ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / 𝑛 ) ) ) |
| 130 |
1
|
oveq2i |
⊢ ( 𝑥 · 𝑇 ) = ( 𝑥 · ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / 𝑛 ) ) |
| 131 |
129 130
|
eqtr4di |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑥 · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) / 𝑛 ) = ( 𝑥 · 𝑇 ) ) |
| 132 |
|
div23 |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑥 · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) / 𝑛 ) = ( ( 𝑥 / 𝑛 ) · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) |
| 133 |
131 132
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( 𝑥 · 𝑇 ) = ( ( 𝑥 / 𝑛 ) · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) |
| 134 |
120 125 128 133
|
syl3anc |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 · 𝑇 ) = ( ( 𝑥 / 𝑛 ) · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) |
| 135 |
124 134
|
oveq12d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) ) − ( 𝑥 · 𝑇 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) − ( ( 𝑥 / 𝑛 ) · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) ) |
| 136 |
122 135
|
eqtrd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) − ( ( 𝑥 / 𝑛 ) · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) ) |
| 137 |
136
|
fveq2d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑥 · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) = ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) − ( ( 𝑥 / 𝑛 ) · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) ) ) |
| 138 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 139 |
|
absid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( abs ‘ 𝑥 ) = 𝑥 ) |
| 140 |
20 138 139
|
3syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ 𝑥 ) = 𝑥 ) |
| 141 |
140
|
oveq1d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ 𝑥 ) · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) = ( 𝑥 · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ) |
| 142 |
121 137 141
|
3eqtr3d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) − ( ( 𝑥 / 𝑛 ) · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) ) = ( 𝑥 · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ) |
| 143 |
8
|
nncnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
| 144 |
143
|
mullidd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑛 ) = 𝑛 ) |
| 145 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 146 |
145
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 147 |
|
fznnfl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑥 ) ) ) |
| 148 |
146 147
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑥 ) ) ) |
| 149 |
148
|
simplbda |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑥 ) |
| 150 |
144 149
|
eqbrtrd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑛 ) ≤ 𝑥 ) |
| 151 |
20
|
rpred |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 152 |
111 151 126
|
lemuldivd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 · 𝑛 ) ≤ 𝑥 ↔ 1 ≤ ( 𝑥 / 𝑛 ) ) ) |
| 153 |
150 152
|
mpbid |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ≤ ( 𝑥 / 𝑛 ) ) |
| 154 |
|
log2sumbnd |
⊢ ( ( ( 𝑥 / 𝑛 ) ∈ ℝ+ ∧ 1 ≤ ( 𝑥 / 𝑛 ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) − ( ( 𝑥 / 𝑛 ) · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) ) ≤ ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) ) |
| 155 |
26 153 154
|
syl2anc |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) − ( ( 𝑥 / 𝑛 ) · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) ) ≤ ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) ) |
| 156 |
142 155
|
eqbrtrrd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) ) |
| 157 |
108 105 20
|
lemuldiv2d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) ↔ ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ≤ ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) / 𝑥 ) ) ) |
| 158 |
156 157
|
mpbid |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ≤ ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) / 𝑥 ) ) |
| 159 |
101 108 106 119 158
|
letrd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) / 𝑥 ) ) |
| 160 |
6 101 106 159
|
fsumle |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) / 𝑥 ) ) |
| 161 |
6 105
|
fsumrecl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) ∈ ℝ ) |
| 162 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 ∈ ℝ ) → ( 𝑥 · 2 ) ∈ ℝ ) |
| 163 |
146 29 162
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 · 2 ) ∈ ℝ ) |
| 164 |
83 163
|
readdcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 𝑥 · 2 ) ) ∈ ℝ ) |
| 165 |
28
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 166 |
|
2cnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 2 ∈ ℂ ) |
| 167 |
6 165 166
|
fsumadd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 2 ) ) |
| 168 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ∧ 2 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 2 = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · 2 ) ) |
| 169 |
6 43 168
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 2 = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · 2 ) ) |
| 170 |
138
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 171 |
|
flge0nn0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
| 172 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
| 173 |
170 171 172
|
3syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
| 174 |
173
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · 2 ) = ( ( ⌊ ‘ 𝑥 ) · 2 ) ) |
| 175 |
169 174
|
eqtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 2 = ( ( ⌊ ‘ 𝑥 ) · 2 ) ) |
| 176 |
175
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 2 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( ( ⌊ ‘ 𝑥 ) · 2 ) ) ) |
| 177 |
167 176
|
eqtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( ( ⌊ ‘ 𝑥 ) · 2 ) ) ) |
| 178 |
|
reflcl |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 179 |
146 178
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 180 |
29
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 2 ∈ ℝ ) |
| 181 |
179 180
|
remulcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) · 2 ) ∈ ℝ ) |
| 182 |
|
flle |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
| 183 |
146 182
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
| 184 |
|
2pos |
⊢ 0 < 2 |
| 185 |
29 184
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 186 |
185
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 187 |
|
lemul1 |
⊢ ( ( ( ⌊ ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ↔ ( ( ⌊ ‘ 𝑥 ) · 2 ) ≤ ( 𝑥 · 2 ) ) ) |
| 188 |
179 146 186 187
|
syl3anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ↔ ( ( ⌊ ‘ 𝑥 ) · 2 ) ≤ ( 𝑥 · 2 ) ) ) |
| 189 |
183 188
|
mpbid |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) · 2 ) ≤ ( 𝑥 · 2 ) ) |
| 190 |
181 163 83 189
|
leadd2dd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( ( ⌊ ‘ 𝑥 ) · 2 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 𝑥 · 2 ) ) ) |
| 191 |
177 190
|
eqbrtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 𝑥 · 2 ) ) ) |
| 192 |
161 164 23 191
|
lediv1dd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) / 𝑥 ) ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 𝑥 · 2 ) ) / 𝑥 ) ) |
| 193 |
105
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) ∈ ℂ ) |
| 194 |
6 56 193 61
|
fsumdivc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) / 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) / 𝑥 ) ) |
| 195 |
83
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 196 |
56 86
|
mulcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 · 2 ) ∈ ℂ ) |
| 197 |
|
divdir |
⊢ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) ∈ ℂ ∧ ( 𝑥 · 2 ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 𝑥 · 2 ) ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + ( ( 𝑥 · 2 ) / 𝑥 ) ) ) |
| 198 |
195 196 55 197
|
syl3anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 𝑥 · 2 ) ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + ( ( 𝑥 · 2 ) / 𝑥 ) ) ) |
| 199 |
86 56 61
|
divcan3d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑥 · 2 ) / 𝑥 ) = 2 ) |
| 200 |
199
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + ( ( 𝑥 · 2 ) / 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) |
| 201 |
198 200
|
eqtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + ( 𝑥 · 2 ) ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) |
| 202 |
192 194 201
|
3brtr3d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) + 2 ) / 𝑥 ) ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) |
| 203 |
102 107 97 160 202
|
letrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) |
| 204 |
98 102 97 103 203
|
letrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) |
| 205 |
97
|
leabsd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) ) |
| 206 |
98 97 100 204 205
|
letrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) ) |
| 207 |
206
|
adantrr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 2 ) / 𝑥 ) + 2 ) ) ) |
| 208 |
82 95 97 40 207
|
o1le |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ∈ 𝑂(1) ) |
| 209 |
1
|
selberglem1 |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) |
| 210 |
|
o1add |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ∘f + ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ∈ 𝑂(1) ) |
| 211 |
208 209 210
|
sylancl |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( log ‘ 𝑚 ) ↑ 2 ) / 𝑥 ) − 𝑇 ) ) ) ∘f + ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) · 𝑇 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ∈ 𝑂(1) ) |
| 212 |
81 211
|
eqeltrrd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
| 213 |
212
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) |