Step |
Hyp |
Ref |
Expression |
1 |
|
muval |
β’ ( π΄ β β β ( ΞΌ β π΄ ) = if ( β π β β ( π β 2 ) β₯ π΄ , 0 , ( - 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) ) ) |
2 |
|
iftrue |
β’ ( β π β β ( π β 2 ) β₯ π΄ β if ( β π β β ( π β 2 ) β₯ π΄ , 0 , ( - 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) ) = 0 ) |
3 |
1 2
|
sylan9eq |
β’ ( ( π΄ β β β§ β π β β ( π β 2 ) β₯ π΄ ) β ( ΞΌ β π΄ ) = 0 ) |
4 |
3
|
fveq2d |
β’ ( ( π΄ β β β§ β π β β ( π β 2 ) β₯ π΄ ) β ( abs β ( ΞΌ β π΄ ) ) = ( abs β 0 ) ) |
5 |
|
abs0 |
β’ ( abs β 0 ) = 0 |
6 |
|
0le1 |
β’ 0 β€ 1 |
7 |
5 6
|
eqbrtri |
β’ ( abs β 0 ) β€ 1 |
8 |
4 7
|
eqbrtrdi |
β’ ( ( π΄ β β β§ β π β β ( π β 2 ) β₯ π΄ ) β ( abs β ( ΞΌ β π΄ ) ) β€ 1 ) |
9 |
|
iffalse |
β’ ( Β¬ β π β β ( π β 2 ) β₯ π΄ β if ( β π β β ( π β 2 ) β₯ π΄ , 0 , ( - 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) ) = ( - 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) ) |
10 |
1 9
|
sylan9eq |
β’ ( ( π΄ β β β§ Β¬ β π β β ( π β 2 ) β₯ π΄ ) β ( ΞΌ β π΄ ) = ( - 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) ) |
11 |
10
|
fveq2d |
β’ ( ( π΄ β β β§ Β¬ β π β β ( π β 2 ) β₯ π΄ ) β ( abs β ( ΞΌ β π΄ ) ) = ( abs β ( - 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) ) ) |
12 |
|
neg1cn |
β’ - 1 β β |
13 |
|
prmdvdsfi |
β’ ( π΄ β β β { π β β β£ π β₯ π΄ } β Fin ) |
14 |
|
hashcl |
β’ ( { π β β β£ π β₯ π΄ } β Fin β ( β― β { π β β β£ π β₯ π΄ } ) β β0 ) |
15 |
13 14
|
syl |
β’ ( π΄ β β β ( β― β { π β β β£ π β₯ π΄ } ) β β0 ) |
16 |
|
absexp |
β’ ( ( - 1 β β β§ ( β― β { π β β β£ π β₯ π΄ } ) β β0 ) β ( abs β ( - 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) ) = ( ( abs β - 1 ) β ( β― β { π β β β£ π β₯ π΄ } ) ) ) |
17 |
12 15 16
|
sylancr |
β’ ( π΄ β β β ( abs β ( - 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) ) = ( ( abs β - 1 ) β ( β― β { π β β β£ π β₯ π΄ } ) ) ) |
18 |
|
ax-1cn |
β’ 1 β β |
19 |
18
|
absnegi |
β’ ( abs β - 1 ) = ( abs β 1 ) |
20 |
|
abs1 |
β’ ( abs β 1 ) = 1 |
21 |
19 20
|
eqtri |
β’ ( abs β - 1 ) = 1 |
22 |
21
|
oveq1i |
β’ ( ( abs β - 1 ) β ( β― β { π β β β£ π β₯ π΄ } ) ) = ( 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) |
23 |
15
|
nn0zd |
β’ ( π΄ β β β ( β― β { π β β β£ π β₯ π΄ } ) β β€ ) |
24 |
|
1exp |
β’ ( ( β― β { π β β β£ π β₯ π΄ } ) β β€ β ( 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) = 1 ) |
25 |
23 24
|
syl |
β’ ( π΄ β β β ( 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) = 1 ) |
26 |
22 25
|
eqtrid |
β’ ( π΄ β β β ( ( abs β - 1 ) β ( β― β { π β β β£ π β₯ π΄ } ) ) = 1 ) |
27 |
17 26
|
eqtrd |
β’ ( π΄ β β β ( abs β ( - 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) ) = 1 ) |
28 |
27
|
adantr |
β’ ( ( π΄ β β β§ Β¬ β π β β ( π β 2 ) β₯ π΄ ) β ( abs β ( - 1 β ( β― β { π β β β£ π β₯ π΄ } ) ) ) = 1 ) |
29 |
11 28
|
eqtrd |
β’ ( ( π΄ β β β§ Β¬ β π β β ( π β 2 ) β₯ π΄ ) β ( abs β ( ΞΌ β π΄ ) ) = 1 ) |
30 |
|
1le1 |
β’ 1 β€ 1 |
31 |
29 30
|
eqbrtrdi |
β’ ( ( π΄ β β β§ Β¬ β π β β ( π β 2 ) β₯ π΄ ) β ( abs β ( ΞΌ β π΄ ) ) β€ 1 ) |
32 |
8 31
|
pm2.61dan |
β’ ( π΄ β β β ( abs β ( ΞΌ β π΄ ) ) β€ 1 ) |