| Step |
Hyp |
Ref |
Expression |
| 1 |
|
muval |
|- ( A e. NN -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
| 2 |
|
iftrue |
|- ( E. p e. Prime ( p ^ 2 ) || A -> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 0 ) |
| 3 |
1 2
|
sylan9eq |
|- ( ( A e. NN /\ E. p e. Prime ( p ^ 2 ) || A ) -> ( mmu ` A ) = 0 ) |
| 4 |
3
|
fveq2d |
|- ( ( A e. NN /\ E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) = ( abs ` 0 ) ) |
| 5 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 6 |
|
0le1 |
|- 0 <_ 1 |
| 7 |
5 6
|
eqbrtri |
|- ( abs ` 0 ) <_ 1 |
| 8 |
4 7
|
eqbrtrdi |
|- ( ( A e. NN /\ E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) <_ 1 ) |
| 9 |
|
iffalse |
|- ( -. E. p e. Prime ( p ^ 2 ) || A -> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
| 10 |
1 9
|
sylan9eq |
|- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
| 11 |
10
|
fveq2d |
|- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) = ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
| 12 |
|
neg1cn |
|- -u 1 e. CC |
| 13 |
|
prmdvdsfi |
|- ( A e. NN -> { p e. Prime | p || A } e. Fin ) |
| 14 |
|
hashcl |
|- ( { p e. Prime | p || A } e. Fin -> ( # ` { p e. Prime | p || A } ) e. NN0 ) |
| 15 |
13 14
|
syl |
|- ( A e. NN -> ( # ` { p e. Prime | p || A } ) e. NN0 ) |
| 16 |
|
absexp |
|- ( ( -u 1 e. CC /\ ( # ` { p e. Prime | p || A } ) e. NN0 ) -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) ) |
| 17 |
12 15 16
|
sylancr |
|- ( A e. NN -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) ) |
| 18 |
|
ax-1cn |
|- 1 e. CC |
| 19 |
18
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 20 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 21 |
19 20
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
| 22 |
21
|
oveq1i |
|- ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) = ( 1 ^ ( # ` { p e. Prime | p || A } ) ) |
| 23 |
15
|
nn0zd |
|- ( A e. NN -> ( # ` { p e. Prime | p || A } ) e. ZZ ) |
| 24 |
|
1exp |
|- ( ( # ` { p e. Prime | p || A } ) e. ZZ -> ( 1 ^ ( # ` { p e. Prime | p || A } ) ) = 1 ) |
| 25 |
23 24
|
syl |
|- ( A e. NN -> ( 1 ^ ( # ` { p e. Prime | p || A } ) ) = 1 ) |
| 26 |
22 25
|
eqtrid |
|- ( A e. NN -> ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) = 1 ) |
| 27 |
17 26
|
eqtrd |
|- ( A e. NN -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 1 ) |
| 28 |
27
|
adantr |
|- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 1 ) |
| 29 |
11 28
|
eqtrd |
|- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) = 1 ) |
| 30 |
|
1le1 |
|- 1 <_ 1 |
| 31 |
29 30
|
eqbrtrdi |
|- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) <_ 1 ) |
| 32 |
8 31
|
pm2.61dan |
|- ( A e. NN -> ( abs ` ( mmu ` A ) ) <_ 1 ) |