| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvoveq1 | ⊢ ( 𝑛  =  ( 𝑑  ·  𝑚 )  →  ( log ‘ ( 𝑛  /  𝑑 ) )  =  ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑛  =  ( 𝑑  ·  𝑚 )  →  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 )  =  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑛  =  ( 𝑑  ·  𝑚 )  →  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  =  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 4 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 5 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ⊆  ℕ | 
						
							| 6 |  | simprr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 7 | 5 6 | sselid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  𝑑  ∈  ℕ ) | 
						
							| 8 |  | mucl | ⊢ ( 𝑑  ∈  ℕ  →  ( μ ‘ 𝑑 )  ∈  ℤ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( μ ‘ 𝑑 )  ∈  ℤ ) | 
						
							| 10 | 9 | zcnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( μ ‘ 𝑑 )  ∈  ℂ ) | 
						
							| 11 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 12 | 11 | nnrpd | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 13 | 12 | ad2antrl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 14 | 7 | nnrpd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  𝑑  ∈  ℝ+ ) | 
						
							| 15 | 13 14 | rpdivcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( 𝑛  /  𝑑 )  ∈  ℝ+ ) | 
						
							| 16 |  | relogcl | ⊢ ( ( 𝑛  /  𝑑 )  ∈  ℝ+  →  ( log ‘ ( 𝑛  /  𝑑 ) )  ∈  ℝ ) | 
						
							| 17 | 16 | recnd | ⊢ ( ( 𝑛  /  𝑑 )  ∈  ℝ+  →  ( log ‘ ( 𝑛  /  𝑑 ) )  ∈  ℂ ) | 
						
							| 18 | 15 17 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( log ‘ ( 𝑛  /  𝑑 ) )  ∈  ℂ ) | 
						
							| 19 | 18 | sqcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 20 | 10 19 | mulcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 21 | 3 4 20 | dvdsflsumcom | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  =  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 22 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 24 | 23 | nncnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 25 |  | elfznn | ⊢ ( 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑑  ∈  ℕ ) | 
						
							| 26 | 25 | 3ad2ant2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  𝑑  ∈  ℕ ) | 
						
							| 27 | 26 | nncnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  𝑑  ∈  ℂ ) | 
						
							| 28 | 26 | nnne0d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  𝑑  ≠  0 ) | 
						
							| 29 | 24 27 28 | divcan3d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( ( 𝑑  ·  𝑚 )  /  𝑑 )  =  𝑚 ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) )  =  ( log ‘ 𝑚 ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 )  =  ( ( log ‘ 𝑚 ) ↑ 2 ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) )  =  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) | 
						
							| 33 | 32 | 2sumeq2dv | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) )  =  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) | 
						
							| 34 | 21 33 | eqtrd | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  =  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) | 
						
							| 35 | 34 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  /  𝑥 )  =  ( Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) )  /  𝑥 ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 37 | 36 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 38 |  | eqid | ⊢ ( ( ( ( log ‘ ( 𝑥  /  𝑑 ) ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑑 ) ) ) ) )  /  𝑑 )  =  ( ( ( ( log ‘ ( 𝑥  /  𝑑 ) ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑑 ) ) ) ) )  /  𝑑 ) | 
						
							| 39 | 38 | selberglem2 | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) | 
						
							| 40 | 37 39 | eqeltri | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) |