| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvoveq1 |  | 
						
							| 2 | 1 | oveq1d |  | 
						
							| 3 | 2 | oveq2d |  | 
						
							| 4 |  | rpre |  | 
						
							| 5 |  | ssrab2 |  | 
						
							| 6 |  | simprr |  | 
						
							| 7 | 5 6 | sselid |  | 
						
							| 8 |  | mucl |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 | 9 | zcnd |  | 
						
							| 11 |  | elfznn |  | 
						
							| 12 | 11 | nnrpd |  | 
						
							| 13 | 12 | ad2antrl |  | 
						
							| 14 | 7 | nnrpd |  | 
						
							| 15 | 13 14 | rpdivcld |  | 
						
							| 16 |  | relogcl |  | 
						
							| 17 | 16 | recnd |  | 
						
							| 18 | 15 17 | syl |  | 
						
							| 19 | 18 | sqcld |  | 
						
							| 20 | 10 19 | mulcld |  | 
						
							| 21 | 3 4 20 | dvdsflsumcom |  | 
						
							| 22 |  | elfznn |  | 
						
							| 23 | 22 | 3ad2ant3 |  | 
						
							| 24 | 23 | nncnd |  | 
						
							| 25 |  | elfznn |  | 
						
							| 26 | 25 | 3ad2ant2 |  | 
						
							| 27 | 26 | nncnd |  | 
						
							| 28 | 26 | nnne0d |  | 
						
							| 29 | 24 27 28 | divcan3d |  | 
						
							| 30 | 29 | fveq2d |  | 
						
							| 31 | 30 | oveq1d |  | 
						
							| 32 | 31 | oveq2d |  | 
						
							| 33 | 32 | 2sumeq2dv |  | 
						
							| 34 | 21 33 | eqtrd |  | 
						
							| 35 | 34 | oveq1d |  | 
						
							| 36 | 35 | oveq1d |  | 
						
							| 37 | 36 | mpteq2ia |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 38 | selberglem2 |  | 
						
							| 40 | 37 39 | eqeltri |  |