Metamath Proof Explorer


Theorem logsqvma2

Description: The Möbius inverse of logsqvma . Equation 10.4.8 of Shapiro, p. 418. (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Assertion logsqvma2 N d x | x N μ d log N d 2 = d x | x N Λ d Λ N d + Λ N log N

Proof

Step Hyp Ref Expression
1 dvdsfi k x | x k Fin
2 ssrab2 x | x k
3 simpr k d x | x k d x | x k
4 2 3 sselid k d x | x k d
5 vmacl d Λ d
6 4 5 syl k d x | x k Λ d
7 dvdsdivcl k d x | x k k d x | x k
8 2 7 sselid k d x | x k k d
9 vmacl k d Λ k d
10 8 9 syl k d x | x k Λ k d
11 6 10 remulcld k d x | x k Λ d Λ k d
12 1 11 fsumrecl k d x | x k Λ d Λ k d
13 vmacl k Λ k
14 nnrp k k +
15 14 relogcld k log k
16 13 15 remulcld k Λ k log k
17 12 16 readdcld k d x | x k Λ d Λ k d + Λ k log k
18 17 recnd k d x | x k Λ d Λ k d + Λ k log k
19 18 adantl N k d x | x k Λ d Λ k d + Λ k log k
20 19 fmpttd N k d x | x k Λ d Λ k d + Λ k log k :
21 ssrab2 x | x n
22 simpr N n m x | x n m x | x n
23 21 22 sselid N n m x | x n m
24 breq2 k = m x k x m
25 24 rabbidv k = m x | x k = x | x m
26 fvoveq1 k = m Λ k d = Λ m d
27 26 oveq2d k = m Λ d Λ k d = Λ d Λ m d
28 27 adantr k = m d x | x k Λ d Λ k d = Λ d Λ m d
29 25 28 sumeq12dv k = m d x | x k Λ d Λ k d = d x | x m Λ d Λ m d
30 fveq2 k = m Λ k = Λ m
31 fveq2 k = m log k = log m
32 30 31 oveq12d k = m Λ k log k = Λ m log m
33 29 32 oveq12d k = m d x | x k Λ d Λ k d + Λ k log k = d x | x m Λ d Λ m d + Λ m log m
34 eqid k d x | x k Λ d Λ k d + Λ k log k = k d x | x k Λ d Λ k d + Λ k log k
35 ovex d x | x k Λ d Λ k d + Λ k log k V
36 33 34 35 fvmpt3i m k d x | x k Λ d Λ k d + Λ k log k m = d x | x m Λ d Λ m d + Λ m log m
37 23 36 syl N n m x | x n k d x | x k Λ d Λ k d + Λ k log k m = d x | x m Λ d Λ m d + Λ m log m
38 37 sumeq2dv N n m x | x n k d x | x k Λ d Λ k d + Λ k log k m = m x | x n d x | x m Λ d Λ m d + Λ m log m
39 logsqvma n m x | x n d x | x m Λ d Λ m d + Λ m log m = log n 2
40 39 adantl N n m x | x n d x | x m Λ d Λ m d + Λ m log m = log n 2
41 38 40 eqtr2d N n log n 2 = m x | x n k d x | x k Λ d Λ k d + Λ k log k m
42 41 mpteq2dva N n log n 2 = n m x | x n k d x | x k Λ d Λ k d + Λ k log k m
43 20 42 muinv N k d x | x k Λ d Λ k d + Λ k log k = i j x | x i μ j n log n 2 i j
44 43 fveq1d N k d x | x k Λ d Λ k d + Λ k log k N = i j x | x i μ j n log n 2 i j N
45 breq2 k = N x k x N
46 45 rabbidv k = N x | x k = x | x N
47 fvoveq1 k = N Λ k d = Λ N d
48 47 oveq2d k = N Λ d Λ k d = Λ d Λ N d
49 48 adantr k = N d x | x k Λ d Λ k d = Λ d Λ N d
50 46 49 sumeq12dv k = N d x | x k Λ d Λ k d = d x | x N Λ d Λ N d
51 fveq2 k = N Λ k = Λ N
52 fveq2 k = N log k = log N
53 51 52 oveq12d k = N Λ k log k = Λ N log N
54 50 53 oveq12d k = N d x | x k Λ d Λ k d + Λ k log k = d x | x N Λ d Λ N d + Λ N log N
55 54 34 35 fvmpt3i N k d x | x k Λ d Λ k d + Λ k log k N = d x | x N Λ d Λ N d + Λ N log N
56 fveq2 j = d μ j = μ d
57 oveq2 j = d i j = i d
58 57 fveq2d j = d log i j = log i d
59 58 oveq1d j = d log i j 2 = log i d 2
60 56 59 oveq12d j = d μ j log i j 2 = μ d log i d 2
61 60 cbvsumv j x | x i μ j log i j 2 = d x | x i μ d log i d 2
62 breq2 i = N x i x N
63 62 rabbidv i = N x | x i = x | x N
64 fvoveq1 i = N log i d = log N d
65 64 oveq1d i = N log i d 2 = log N d 2
66 65 oveq2d i = N μ d log i d 2 = μ d log N d 2
67 66 adantr i = N d x | x i μ d log i d 2 = μ d log N d 2
68 63 67 sumeq12dv i = N d x | x i μ d log i d 2 = d x | x N μ d log N d 2
69 61 68 eqtrid i = N j x | x i μ j log i j 2 = d x | x N μ d log N d 2
70 ssrab2 x | x i
71 dvdsdivcl i j x | x i i j x | x i
72 70 71 sselid i j x | x i i j
73 fveq2 n = i j log n = log i j
74 73 oveq1d n = i j log n 2 = log i j 2
75 eqid n log n 2 = n log n 2
76 ovex log n 2 V
77 74 75 76 fvmpt3i i j n log n 2 i j = log i j 2
78 72 77 syl i j x | x i n log n 2 i j = log i j 2
79 78 oveq2d i j x | x i μ j n log n 2 i j = μ j log i j 2
80 79 sumeq2dv i j x | x i μ j n log n 2 i j = j x | x i μ j log i j 2
81 80 mpteq2ia i j x | x i μ j n log n 2 i j = i j x | x i μ j log i j 2
82 sumex j x | x i μ j log i j 2 V
83 69 81 82 fvmpt3i N i j x | x i μ j n log n 2 i j N = d x | x N μ d log N d 2
84 44 55 83 3eqtr3rd N d x | x N μ d log N d 2 = d x | x N Λ d Λ N d + Λ N log N