Metamath Proof Explorer


Theorem logsqvma

Description: A formula for log ^ 2 ( N ) in terms of the primes. Equation 10.4.6 of Shapiro, p. 418. (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Assertion logsqvma N d x | x N u x | x d Λ u Λ d u + Λ d log d = log N 2

Proof

Step Hyp Ref Expression
1 dvdsfi N x | x N Fin
2 fzfid N d x | x N 1 d Fin
3 elrabi d x | x N d
4 3 adantl N d x | x N d
5 dvdsssfz1 d x | x d 1 d
6 4 5 syl N d x | x N x | x d 1 d
7 2 6 ssfid N d x | x N x | x d Fin
8 elrabi u x | x d u
9 8 ad2antll N d x | x N u x | x d u
10 vmacl u Λ u
11 9 10 syl N d x | x N u x | x d Λ u
12 breq1 x = u x d u d
13 12 elrab u x | x d u u d
14 13 simprbi u x | x d u d
15 14 ad2antll N d x | x N u x | x d u d
16 3 ad2antrl N d x | x N u x | x d d
17 nndivdvds d u u d d u
18 16 9 17 syl2anc N d x | x N u x | x d u d d u
19 15 18 mpbid N d x | x N u x | x d d u
20 vmacl d u Λ d u
21 19 20 syl N d x | x N u x | x d Λ d u
22 11 21 remulcld N d x | x N u x | x d Λ u Λ d u
23 22 recnd N d x | x N u x | x d Λ u Λ d u
24 23 anassrs N d x | x N u x | x d Λ u Λ d u
25 7 24 fsumcl N d x | x N u x | x d Λ u Λ d u
26 vmacl d Λ d
27 4 26 syl N d x | x N Λ d
28 4 nnrpd N d x | x N d +
29 28 relogcld N d x | x N log d
30 27 29 remulcld N d x | x N Λ d log d
31 30 recnd N d x | x N Λ d log d
32 1 25 31 fsumadd N d x | x N u x | x d Λ u Λ d u + Λ d log d = d x | x N u x | x d Λ u Λ d u + d x | x N Λ d log d
33 id N N
34 fvoveq1 d = u k Λ d u = Λ u k u
35 34 oveq2d d = u k Λ u Λ d u = Λ u Λ u k u
36 33 35 23 fsumdvdscom N d x | x N u x | x d Λ u Λ d u = u x | x N k x | x N u Λ u Λ u k u
37 ssrab2 x | x N u
38 simpr N u x | x N k x | x N u k x | x N u
39 37 38 sselid N u x | x N k x | x N u k
40 39 nncnd N u x | x N k x | x N u k
41 ssrab2 x | x N
42 simpr N u x | x N u x | x N
43 41 42 sselid N u x | x N u
44 43 nncnd N u x | x N u
45 44 adantr N u x | x N k x | x N u u
46 43 nnne0d N u x | x N u 0
47 46 adantr N u x | x N k x | x N u u 0
48 40 45 47 divcan3d N u x | x N k x | x N u u k u = k
49 48 fveq2d N u x | x N k x | x N u Λ u k u = Λ k
50 49 sumeq2dv N u x | x N k x | x N u Λ u k u = k x | x N u Λ k
51 dvdsdivcl N u x | x N N u x | x N
52 41 51 sselid N u x | x N N u
53 vmasum N u k x | x N u Λ k = log N u
54 52 53 syl N u x | x N k x | x N u Λ k = log N u
55 nnrp N N +
56 55 adantr N u x | x N N +
57 43 nnrpd N u x | x N u +
58 56 57 relogdivd N u x | x N log N u = log N log u
59 50 54 58 3eqtrd N u x | x N k x | x N u Λ u k u = log N log u
60 59 oveq2d N u x | x N Λ u k x | x N u Λ u k u = Λ u log N log u
61 fzfid N u x | x N 1 N u Fin
62 dvdsssfz1 N u x | x N u 1 N u
63 52 62 syl N u x | x N x | x N u 1 N u
64 61 63 ssfid N u x | x N x | x N u Fin
65 43 10 syl N u x | x N Λ u
66 65 recnd N u x | x N Λ u
67 vmacl k Λ k
68 39 67 syl N u x | x N k x | x N u Λ k
69 68 recnd N u x | x N k x | x N u Λ k
70 49 69 eqeltrd N u x | x N k x | x N u Λ u k u
71 64 66 70 fsummulc2 N u x | x N Λ u k x | x N u Λ u k u = k x | x N u Λ u Λ u k u
72 relogcl N + log N
73 72 recnd N + log N
74 56 73 syl N u x | x N log N
75 57 relogcld N u x | x N log u
76 75 recnd N u x | x N log u
77 66 74 76 subdid N u x | x N Λ u log N log u = Λ u log N Λ u log u
78 60 71 77 3eqtr3d N u x | x N k x | x N u Λ u Λ u k u = Λ u log N Λ u log u
79 78 sumeq2dv N u x | x N k x | x N u Λ u Λ u k u = u x | x N Λ u log N Λ u log u
80 66 74 mulcld N u x | x N Λ u log N
81 66 76 mulcld N u x | x N Λ u log u
82 1 80 81 fsumsub N u x | x N Λ u log N Λ u log u = u x | x N Λ u log N u x | x N Λ u log u
83 55 73 syl N log N
84 83 sqvald N log N 2 = log N log N
85 vmasum N u x | x N Λ u = log N
86 85 oveq1d N u x | x N Λ u log N = log N log N
87 1 83 66 fsummulc1 N u x | x N Λ u log N = u x | x N Λ u log N
88 84 86 87 3eqtr2rd N u x | x N Λ u log N = log N 2
89 fveq2 u = d Λ u = Λ d
90 fveq2 u = d log u = log d
91 89 90 oveq12d u = d Λ u log u = Λ d log d
92 91 cbvsumv u x | x N Λ u log u = d x | x N Λ d log d
93 92 a1i N u x | x N Λ u log u = d x | x N Λ d log d
94 88 93 oveq12d N u x | x N Λ u log N u x | x N Λ u log u = log N 2 d x | x N Λ d log d
95 82 94 eqtrd N u x | x N Λ u log N Λ u log u = log N 2 d x | x N Λ d log d
96 36 79 95 3eqtrd N d x | x N u x | x d Λ u Λ d u = log N 2 d x | x N Λ d log d
97 96 oveq1d N d x | x N u x | x d Λ u Λ d u + d x | x N Λ d log d = log N 2 - d x | x N Λ d log d + d x | x N Λ d log d
98 83 sqcld N log N 2
99 1 31 fsumcl N d x | x N Λ d log d
100 98 99 npcand N log N 2 - d x | x N Λ d log d + d x | x N Λ d log d = log N 2
101 32 97 100 3eqtrd N d x | x N u x | x d Λ u Λ d u + Λ d log d = log N 2