| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsfi |  |-  ( N e. NN -> { x e. NN | x || N } e. Fin ) | 
						
							| 2 |  | fzfid |  |-  ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( 1 ... d ) e. Fin ) | 
						
							| 3 |  | elrabi |  |-  ( d e. { x e. NN | x || N } -> d e. NN ) | 
						
							| 4 | 3 | adantl |  |-  ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> d e. NN ) | 
						
							| 5 |  | dvdsssfz1 |  |-  ( d e. NN -> { x e. NN | x || d } C_ ( 1 ... d ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> { x e. NN | x || d } C_ ( 1 ... d ) ) | 
						
							| 7 | 2 6 | ssfid |  |-  ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> { x e. NN | x || d } e. Fin ) | 
						
							| 8 |  | elrabi |  |-  ( u e. { x e. NN | x || d } -> u e. NN ) | 
						
							| 9 | 8 | ad2antll |  |-  ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> u e. NN ) | 
						
							| 10 |  | vmacl |  |-  ( u e. NN -> ( Lam ` u ) e. RR ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( Lam ` u ) e. RR ) | 
						
							| 12 |  | breq1 |  |-  ( x = u -> ( x || d <-> u || d ) ) | 
						
							| 13 | 12 | elrab |  |-  ( u e. { x e. NN | x || d } <-> ( u e. NN /\ u || d ) ) | 
						
							| 14 | 13 | simprbi |  |-  ( u e. { x e. NN | x || d } -> u || d ) | 
						
							| 15 | 14 | ad2antll |  |-  ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> u || d ) | 
						
							| 16 | 3 | ad2antrl |  |-  ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> d e. NN ) | 
						
							| 17 |  | nndivdvds |  |-  ( ( d e. NN /\ u e. NN ) -> ( u || d <-> ( d / u ) e. NN ) ) | 
						
							| 18 | 16 9 17 | syl2anc |  |-  ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( u || d <-> ( d / u ) e. NN ) ) | 
						
							| 19 | 15 18 | mpbid |  |-  ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( d / u ) e. NN ) | 
						
							| 20 |  | vmacl |  |-  ( ( d / u ) e. NN -> ( Lam ` ( d / u ) ) e. RR ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( Lam ` ( d / u ) ) e. RR ) | 
						
							| 22 | 11 21 | remulcld |  |-  ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( ( N e. NN /\ ( d e. { x e. NN | x || N } /\ u e. { x e. NN | x || d } ) ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. CC ) | 
						
							| 24 | 23 | anassrs |  |-  ( ( ( N e. NN /\ d e. { x e. NN | x || N } ) /\ u e. { x e. NN | x || d } ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. CC ) | 
						
							| 25 | 7 24 | fsumcl |  |-  ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) e. CC ) | 
						
							| 26 |  | vmacl |  |-  ( d e. NN -> ( Lam ` d ) e. RR ) | 
						
							| 27 | 4 26 | syl |  |-  ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( Lam ` d ) e. RR ) | 
						
							| 28 | 4 | nnrpd |  |-  ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> d e. RR+ ) | 
						
							| 29 | 28 | relogcld |  |-  ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( log ` d ) e. RR ) | 
						
							| 30 | 27 29 | remulcld |  |-  ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( ( Lam ` d ) x. ( log ` d ) ) e. RR ) | 
						
							| 31 | 30 | recnd |  |-  ( ( N e. NN /\ d e. { x e. NN | x || N } ) -> ( ( Lam ` d ) x. ( log ` d ) ) e. CC ) | 
						
							| 32 | 1 25 31 | fsumadd |  |-  ( N e. NN -> sum_ d e. { x e. NN | x || N } ( sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + ( ( Lam ` d ) x. ( log ` d ) ) ) = ( sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) | 
						
							| 33 |  | id |  |-  ( N e. NN -> N e. NN ) | 
						
							| 34 |  | fvoveq1 |  |-  ( d = ( u x. k ) -> ( Lam ` ( d / u ) ) = ( Lam ` ( ( u x. k ) / u ) ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( d = ( u x. k ) -> ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) = ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) ) | 
						
							| 36 | 33 35 23 | fsumdvdscom |  |-  ( N e. NN -> sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) = sum_ u e. { x e. NN | x || N } sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) ) | 
						
							| 37 |  | ssrab2 |  |-  { x e. NN | x || ( N / u ) } C_ NN | 
						
							| 38 |  | simpr |  |-  ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> k e. { x e. NN | x || ( N / u ) } ) | 
						
							| 39 | 37 38 | sselid |  |-  ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> k e. NN ) | 
						
							| 40 | 39 | nncnd |  |-  ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> k e. CC ) | 
						
							| 41 |  | ssrab2 |  |-  { x e. NN | x || N } C_ NN | 
						
							| 42 |  | simpr |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. { x e. NN | x || N } ) | 
						
							| 43 | 41 42 | sselid |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. NN ) | 
						
							| 44 | 43 | nncnd |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. CC ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> u e. CC ) | 
						
							| 46 | 43 | nnne0d |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u =/= 0 ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> u =/= 0 ) | 
						
							| 48 | 40 45 47 | divcan3d |  |-  ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( ( u x. k ) / u ) = k ) | 
						
							| 49 | 48 | fveq2d |  |-  ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` ( ( u x. k ) / u ) ) = ( Lam ` k ) ) | 
						
							| 50 | 49 | sumeq2dv |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) = sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` k ) ) | 
						
							| 51 |  | dvdsdivcl |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( N / u ) e. { x e. NN | x || N } ) | 
						
							| 52 | 41 51 | sselid |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( N / u ) e. NN ) | 
						
							| 53 |  | vmasum |  |-  ( ( N / u ) e. NN -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` k ) = ( log ` ( N / u ) ) ) | 
						
							| 54 | 52 53 | syl |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` k ) = ( log ` ( N / u ) ) ) | 
						
							| 55 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 56 | 55 | adantr |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> N e. RR+ ) | 
						
							| 57 | 43 | nnrpd |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> u e. RR+ ) | 
						
							| 58 | 56 57 | relogdivd |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` ( N / u ) ) = ( ( log ` N ) - ( log ` u ) ) ) | 
						
							| 59 | 50 54 58 | 3eqtrd |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) = ( ( log ` N ) - ( log ` u ) ) ) | 
						
							| 60 | 59 | oveq2d |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) ) = ( ( Lam ` u ) x. ( ( log ` N ) - ( log ` u ) ) ) ) | 
						
							| 61 |  | fzfid |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( 1 ... ( N / u ) ) e. Fin ) | 
						
							| 62 |  | dvdsssfz1 |  |-  ( ( N / u ) e. NN -> { x e. NN | x || ( N / u ) } C_ ( 1 ... ( N / u ) ) ) | 
						
							| 63 | 52 62 | syl |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> { x e. NN | x || ( N / u ) } C_ ( 1 ... ( N / u ) ) ) | 
						
							| 64 | 61 63 | ssfid |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> { x e. NN | x || ( N / u ) } e. Fin ) | 
						
							| 65 | 43 10 | syl |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( Lam ` u ) e. RR ) | 
						
							| 66 | 65 | recnd |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( Lam ` u ) e. CC ) | 
						
							| 67 |  | vmacl |  |-  ( k e. NN -> ( Lam ` k ) e. RR ) | 
						
							| 68 | 39 67 | syl |  |-  ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` k ) e. RR ) | 
						
							| 69 | 68 | recnd |  |-  ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` k ) e. CC ) | 
						
							| 70 | 49 69 | eqeltrd |  |-  ( ( ( N e. NN /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / u ) } ) -> ( Lam ` ( ( u x. k ) / u ) ) e. CC ) | 
						
							| 71 | 64 66 70 | fsummulc2 |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. sum_ k e. { x e. NN | x || ( N / u ) } ( Lam ` ( ( u x. k ) / u ) ) ) = sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) ) | 
						
							| 72 |  | relogcl |  |-  ( N e. RR+ -> ( log ` N ) e. RR ) | 
						
							| 73 | 72 | recnd |  |-  ( N e. RR+ -> ( log ` N ) e. CC ) | 
						
							| 74 | 56 73 | syl |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` N ) e. CC ) | 
						
							| 75 | 57 | relogcld |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` u ) e. RR ) | 
						
							| 76 | 75 | recnd |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( log ` u ) e. CC ) | 
						
							| 77 | 66 74 76 | subdid |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. ( ( log ` N ) - ( log ` u ) ) ) = ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) ) | 
						
							| 78 | 60 71 77 | 3eqtr3d |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) = ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) ) | 
						
							| 79 | 78 | sumeq2dv |  |-  ( N e. NN -> sum_ u e. { x e. NN | x || N } sum_ k e. { x e. NN | x || ( N / u ) } ( ( Lam ` u ) x. ( Lam ` ( ( u x. k ) / u ) ) ) = sum_ u e. { x e. NN | x || N } ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) ) | 
						
							| 80 | 66 74 | mulcld |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. ( log ` N ) ) e. CC ) | 
						
							| 81 | 66 76 | mulcld |  |-  ( ( N e. NN /\ u e. { x e. NN | x || N } ) -> ( ( Lam ` u ) x. ( log ` u ) ) e. CC ) | 
						
							| 82 | 1 80 81 | fsumsub |  |-  ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) = ( sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) - sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) ) ) | 
						
							| 83 | 55 73 | syl |  |-  ( N e. NN -> ( log ` N ) e. CC ) | 
						
							| 84 | 83 | sqvald |  |-  ( N e. NN -> ( ( log ` N ) ^ 2 ) = ( ( log ` N ) x. ( log ` N ) ) ) | 
						
							| 85 |  | vmasum |  |-  ( N e. NN -> sum_ u e. { x e. NN | x || N } ( Lam ` u ) = ( log ` N ) ) | 
						
							| 86 | 85 | oveq1d |  |-  ( N e. NN -> ( sum_ u e. { x e. NN | x || N } ( Lam ` u ) x. ( log ` N ) ) = ( ( log ` N ) x. ( log ` N ) ) ) | 
						
							| 87 | 1 83 66 | fsummulc1 |  |-  ( N e. NN -> ( sum_ u e. { x e. NN | x || N } ( Lam ` u ) x. ( log ` N ) ) = sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) ) | 
						
							| 88 | 84 86 87 | 3eqtr2rd |  |-  ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) = ( ( log ` N ) ^ 2 ) ) | 
						
							| 89 |  | fveq2 |  |-  ( u = d -> ( Lam ` u ) = ( Lam ` d ) ) | 
						
							| 90 |  | fveq2 |  |-  ( u = d -> ( log ` u ) = ( log ` d ) ) | 
						
							| 91 | 89 90 | oveq12d |  |-  ( u = d -> ( ( Lam ` u ) x. ( log ` u ) ) = ( ( Lam ` d ) x. ( log ` d ) ) ) | 
						
							| 92 | 91 | cbvsumv |  |-  sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) = sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) | 
						
							| 93 | 92 | a1i |  |-  ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) = sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) | 
						
							| 94 | 88 93 | oveq12d |  |-  ( N e. NN -> ( sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` N ) ) - sum_ u e. { x e. NN | x || N } ( ( Lam ` u ) x. ( log ` u ) ) ) = ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) | 
						
							| 95 | 82 94 | eqtrd |  |-  ( N e. NN -> sum_ u e. { x e. NN | x || N } ( ( ( Lam ` u ) x. ( log ` N ) ) - ( ( Lam ` u ) x. ( log ` u ) ) ) = ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) | 
						
							| 96 | 36 79 95 | 3eqtrd |  |-  ( N e. NN -> sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) = ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) | 
						
							| 97 | 96 | oveq1d |  |-  ( N e. NN -> ( sum_ d e. { x e. NN | x || N } sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) = ( ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) ) | 
						
							| 98 | 83 | sqcld |  |-  ( N e. NN -> ( ( log ` N ) ^ 2 ) e. CC ) | 
						
							| 99 | 1 31 | fsumcl |  |-  ( N e. NN -> sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) e. CC ) | 
						
							| 100 | 98 99 | npcand |  |-  ( N e. NN -> ( ( ( ( log ` N ) ^ 2 ) - sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) + sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( log ` d ) ) ) = ( ( log ` N ) ^ 2 ) ) | 
						
							| 101 | 32 97 100 | 3eqtrd |  |-  ( N e. NN -> sum_ d e. { x e. NN | x || N } ( sum_ u e. { x e. NN | x || d } ( ( Lam ` u ) x. ( Lam ` ( d / u ) ) ) + ( ( Lam ` d ) x. ( log ` d ) ) ) = ( ( log ` N ) ^ 2 ) ) |