Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( k e. NN -> ( 1 ... k ) e. Fin ) |
2 |
|
dvdsssfz1 |
|- ( k e. NN -> { x e. NN | x || k } C_ ( 1 ... k ) ) |
3 |
1 2
|
ssfid |
|- ( k e. NN -> { x e. NN | x || k } e. Fin ) |
4 |
|
ssrab2 |
|- { x e. NN | x || k } C_ NN |
5 |
|
simpr |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> d e. { x e. NN | x || k } ) |
6 |
4 5
|
sselid |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> d e. NN ) |
7 |
|
vmacl |
|- ( d e. NN -> ( Lam ` d ) e. RR ) |
8 |
6 7
|
syl |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( Lam ` d ) e. RR ) |
9 |
|
dvdsdivcl |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( k / d ) e. { x e. NN | x || k } ) |
10 |
4 9
|
sselid |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( k / d ) e. NN ) |
11 |
|
vmacl |
|- ( ( k / d ) e. NN -> ( Lam ` ( k / d ) ) e. RR ) |
12 |
10 11
|
syl |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( Lam ` ( k / d ) ) e. RR ) |
13 |
8 12
|
remulcld |
|- ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) e. RR ) |
14 |
3 13
|
fsumrecl |
|- ( k e. NN -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) e. RR ) |
15 |
|
vmacl |
|- ( k e. NN -> ( Lam ` k ) e. RR ) |
16 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
17 |
16
|
relogcld |
|- ( k e. NN -> ( log ` k ) e. RR ) |
18 |
15 17
|
remulcld |
|- ( k e. NN -> ( ( Lam ` k ) x. ( log ` k ) ) e. RR ) |
19 |
14 18
|
readdcld |
|- ( k e. NN -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. RR ) |
20 |
19
|
recnd |
|- ( k e. NN -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. CC ) |
21 |
20
|
adantl |
|- ( ( N e. NN /\ k e. NN ) -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. CC ) |
22 |
21
|
fmpttd |
|- ( N e. NN -> ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) : NN --> CC ) |
23 |
|
ssrab2 |
|- { x e. NN | x || n } C_ NN |
24 |
|
simpr |
|- ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> m e. { x e. NN | x || n } ) |
25 |
23 24
|
sselid |
|- ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> m e. NN ) |
26 |
|
breq2 |
|- ( k = m -> ( x || k <-> x || m ) ) |
27 |
26
|
rabbidv |
|- ( k = m -> { x e. NN | x || k } = { x e. NN | x || m } ) |
28 |
|
fvoveq1 |
|- ( k = m -> ( Lam ` ( k / d ) ) = ( Lam ` ( m / d ) ) ) |
29 |
28
|
oveq2d |
|- ( k = m -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) ) |
30 |
29
|
adantr |
|- ( ( k = m /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) ) |
31 |
27 30
|
sumeq12dv |
|- ( k = m -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) ) |
32 |
|
fveq2 |
|- ( k = m -> ( Lam ` k ) = ( Lam ` m ) ) |
33 |
|
fveq2 |
|- ( k = m -> ( log ` k ) = ( log ` m ) ) |
34 |
32 33
|
oveq12d |
|- ( k = m -> ( ( Lam ` k ) x. ( log ` k ) ) = ( ( Lam ` m ) x. ( log ` m ) ) ) |
35 |
31 34
|
oveq12d |
|- ( k = m -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
36 |
|
eqid |
|- ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) = ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) |
37 |
|
ovex |
|- ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. _V |
38 |
35 36 37
|
fvmpt3i |
|- ( m e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
39 |
25 38
|
syl |
|- ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
40 |
39
|
sumeq2dv |
|- ( ( N e. NN /\ n e. NN ) -> sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) |
41 |
|
logsqvma |
|- ( n e. NN -> sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) = ( ( log ` n ) ^ 2 ) ) |
42 |
41
|
adantl |
|- ( ( N e. NN /\ n e. NN ) -> sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) = ( ( log ` n ) ^ 2 ) ) |
43 |
40 42
|
eqtr2d |
|- ( ( N e. NN /\ n e. NN ) -> ( ( log ` n ) ^ 2 ) = sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) ) |
44 |
43
|
mpteq2dva |
|- ( N e. NN -> ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) = ( n e. NN |-> sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) ) ) |
45 |
22 44
|
muinv |
|- ( N e. NN -> ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) = ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ) |
46 |
45
|
fveq1d |
|- ( N e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` N ) = ( ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ` N ) ) |
47 |
|
breq2 |
|- ( k = N -> ( x || k <-> x || N ) ) |
48 |
47
|
rabbidv |
|- ( k = N -> { x e. NN | x || k } = { x e. NN | x || N } ) |
49 |
|
fvoveq1 |
|- ( k = N -> ( Lam ` ( k / d ) ) = ( Lam ` ( N / d ) ) ) |
50 |
49
|
oveq2d |
|- ( k = N -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) ) |
51 |
50
|
adantr |
|- ( ( k = N /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) ) |
52 |
48 51
|
sumeq12dv |
|- ( k = N -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) ) |
53 |
|
fveq2 |
|- ( k = N -> ( Lam ` k ) = ( Lam ` N ) ) |
54 |
|
fveq2 |
|- ( k = N -> ( log ` k ) = ( log ` N ) ) |
55 |
53 54
|
oveq12d |
|- ( k = N -> ( ( Lam ` k ) x. ( log ` k ) ) = ( ( Lam ` N ) x. ( log ` N ) ) ) |
56 |
52 55
|
oveq12d |
|- ( k = N -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) ) |
57 |
56 36 37
|
fvmpt3i |
|- ( N e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` N ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) ) |
58 |
|
fveq2 |
|- ( j = d -> ( mmu ` j ) = ( mmu ` d ) ) |
59 |
|
oveq2 |
|- ( j = d -> ( i / j ) = ( i / d ) ) |
60 |
59
|
fveq2d |
|- ( j = d -> ( log ` ( i / j ) ) = ( log ` ( i / d ) ) ) |
61 |
60
|
oveq1d |
|- ( j = d -> ( ( log ` ( i / j ) ) ^ 2 ) = ( ( log ` ( i / d ) ) ^ 2 ) ) |
62 |
58 61
|
oveq12d |
|- ( j = d -> ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) ) |
63 |
62
|
cbvsumv |
|- sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || i } ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) |
64 |
|
breq2 |
|- ( i = N -> ( x || i <-> x || N ) ) |
65 |
64
|
rabbidv |
|- ( i = N -> { x e. NN | x || i } = { x e. NN | x || N } ) |
66 |
|
fvoveq1 |
|- ( i = N -> ( log ` ( i / d ) ) = ( log ` ( N / d ) ) ) |
67 |
66
|
oveq1d |
|- ( i = N -> ( ( log ` ( i / d ) ) ^ 2 ) = ( ( log ` ( N / d ) ) ^ 2 ) ) |
68 |
67
|
oveq2d |
|- ( i = N -> ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) |
69 |
68
|
adantr |
|- ( ( i = N /\ d e. { x e. NN | x || i } ) -> ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) |
70 |
65 69
|
sumeq12dv |
|- ( i = N -> sum_ d e. { x e. NN | x || i } ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) |
71 |
63 70
|
eqtrid |
|- ( i = N -> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) |
72 |
|
ssrab2 |
|- { x e. NN | x || i } C_ NN |
73 |
|
dvdsdivcl |
|- ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( i / j ) e. { x e. NN | x || i } ) |
74 |
72 73
|
sselid |
|- ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( i / j ) e. NN ) |
75 |
|
fveq2 |
|- ( n = ( i / j ) -> ( log ` n ) = ( log ` ( i / j ) ) ) |
76 |
75
|
oveq1d |
|- ( n = ( i / j ) -> ( ( log ` n ) ^ 2 ) = ( ( log ` ( i / j ) ) ^ 2 ) ) |
77 |
|
eqid |
|- ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) = ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) |
78 |
|
ovex |
|- ( ( log ` n ) ^ 2 ) e. _V |
79 |
76 77 78
|
fvmpt3i |
|- ( ( i / j ) e. NN -> ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) = ( ( log ` ( i / j ) ) ^ 2 ) ) |
80 |
74 79
|
syl |
|- ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) = ( ( log ` ( i / j ) ) ^ 2 ) ) |
81 |
80
|
oveq2d |
|- ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) = ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) ) |
82 |
81
|
sumeq2dv |
|- ( i e. NN -> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) = sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) ) |
83 |
82
|
mpteq2ia |
|- ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) = ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) ) |
84 |
|
sumex |
|- sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) e. _V |
85 |
71 83 84
|
fvmpt3i |
|- ( N e. NN -> ( ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ` N ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) |
86 |
46 57 85
|
3eqtr3rd |
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) ) |