Metamath Proof Explorer


Theorem logsqvma2

Description: The Möbius inverse of logsqvma . Equation 10.4.8 of Shapiro, p. 418. (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Assertion logsqvma2
|- ( N e. NN -> sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) )

Proof

Step Hyp Ref Expression
1 fzfid
 |-  ( k e. NN -> ( 1 ... k ) e. Fin )
2 dvdsssfz1
 |-  ( k e. NN -> { x e. NN | x || k } C_ ( 1 ... k ) )
3 1 2 ssfid
 |-  ( k e. NN -> { x e. NN | x || k } e. Fin )
4 ssrab2
 |-  { x e. NN | x || k } C_ NN
5 simpr
 |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> d e. { x e. NN | x || k } )
6 4 5 sselid
 |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> d e. NN )
7 vmacl
 |-  ( d e. NN -> ( Lam ` d ) e. RR )
8 6 7 syl
 |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( Lam ` d ) e. RR )
9 dvdsdivcl
 |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( k / d ) e. { x e. NN | x || k } )
10 4 9 sselid
 |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( k / d ) e. NN )
11 vmacl
 |-  ( ( k / d ) e. NN -> ( Lam ` ( k / d ) ) e. RR )
12 10 11 syl
 |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( Lam ` ( k / d ) ) e. RR )
13 8 12 remulcld
 |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) e. RR )
14 3 13 fsumrecl
 |-  ( k e. NN -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) e. RR )
15 vmacl
 |-  ( k e. NN -> ( Lam ` k ) e. RR )
16 nnrp
 |-  ( k e. NN -> k e. RR+ )
17 16 relogcld
 |-  ( k e. NN -> ( log ` k ) e. RR )
18 15 17 remulcld
 |-  ( k e. NN -> ( ( Lam ` k ) x. ( log ` k ) ) e. RR )
19 14 18 readdcld
 |-  ( k e. NN -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. RR )
20 19 recnd
 |-  ( k e. NN -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. CC )
21 20 adantl
 |-  ( ( N e. NN /\ k e. NN ) -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. CC )
22 21 fmpttd
 |-  ( N e. NN -> ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) : NN --> CC )
23 ssrab2
 |-  { x e. NN | x || n } C_ NN
24 simpr
 |-  ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> m e. { x e. NN | x || n } )
25 23 24 sselid
 |-  ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> m e. NN )
26 breq2
 |-  ( k = m -> ( x || k <-> x || m ) )
27 26 rabbidv
 |-  ( k = m -> { x e. NN | x || k } = { x e. NN | x || m } )
28 fvoveq1
 |-  ( k = m -> ( Lam ` ( k / d ) ) = ( Lam ` ( m / d ) ) )
29 28 oveq2d
 |-  ( k = m -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) )
30 29 adantr
 |-  ( ( k = m /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) )
31 27 30 sumeq12dv
 |-  ( k = m -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) )
32 fveq2
 |-  ( k = m -> ( Lam ` k ) = ( Lam ` m ) )
33 fveq2
 |-  ( k = m -> ( log ` k ) = ( log ` m ) )
34 32 33 oveq12d
 |-  ( k = m -> ( ( Lam ` k ) x. ( log ` k ) ) = ( ( Lam ` m ) x. ( log ` m ) ) )
35 31 34 oveq12d
 |-  ( k = m -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) )
36 eqid
 |-  ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) = ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) )
37 ovex
 |-  ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. _V
38 35 36 37 fvmpt3i
 |-  ( m e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) )
39 25 38 syl
 |-  ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) )
40 39 sumeq2dv
 |-  ( ( N e. NN /\ n e. NN ) -> sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) )
41 logsqvma
 |-  ( n e. NN -> sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) = ( ( log ` n ) ^ 2 ) )
42 41 adantl
 |-  ( ( N e. NN /\ n e. NN ) -> sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) = ( ( log ` n ) ^ 2 ) )
43 40 42 eqtr2d
 |-  ( ( N e. NN /\ n e. NN ) -> ( ( log ` n ) ^ 2 ) = sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) )
44 43 mpteq2dva
 |-  ( N e. NN -> ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) = ( n e. NN |-> sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) ) )
45 22 44 muinv
 |-  ( N e. NN -> ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) = ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) )
46 45 fveq1d
 |-  ( N e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` N ) = ( ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ` N ) )
47 breq2
 |-  ( k = N -> ( x || k <-> x || N ) )
48 47 rabbidv
 |-  ( k = N -> { x e. NN | x || k } = { x e. NN | x || N } )
49 fvoveq1
 |-  ( k = N -> ( Lam ` ( k / d ) ) = ( Lam ` ( N / d ) ) )
50 49 oveq2d
 |-  ( k = N -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) )
51 50 adantr
 |-  ( ( k = N /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) )
52 48 51 sumeq12dv
 |-  ( k = N -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) )
53 fveq2
 |-  ( k = N -> ( Lam ` k ) = ( Lam ` N ) )
54 fveq2
 |-  ( k = N -> ( log ` k ) = ( log ` N ) )
55 53 54 oveq12d
 |-  ( k = N -> ( ( Lam ` k ) x. ( log ` k ) ) = ( ( Lam ` N ) x. ( log ` N ) ) )
56 52 55 oveq12d
 |-  ( k = N -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) )
57 56 36 37 fvmpt3i
 |-  ( N e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` N ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) )
58 fveq2
 |-  ( j = d -> ( mmu ` j ) = ( mmu ` d ) )
59 oveq2
 |-  ( j = d -> ( i / j ) = ( i / d ) )
60 59 fveq2d
 |-  ( j = d -> ( log ` ( i / j ) ) = ( log ` ( i / d ) ) )
61 60 oveq1d
 |-  ( j = d -> ( ( log ` ( i / j ) ) ^ 2 ) = ( ( log ` ( i / d ) ) ^ 2 ) )
62 58 61 oveq12d
 |-  ( j = d -> ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) )
63 62 cbvsumv
 |-  sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || i } ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) )
64 breq2
 |-  ( i = N -> ( x || i <-> x || N ) )
65 64 rabbidv
 |-  ( i = N -> { x e. NN | x || i } = { x e. NN | x || N } )
66 fvoveq1
 |-  ( i = N -> ( log ` ( i / d ) ) = ( log ` ( N / d ) ) )
67 66 oveq1d
 |-  ( i = N -> ( ( log ` ( i / d ) ) ^ 2 ) = ( ( log ` ( N / d ) ) ^ 2 ) )
68 67 oveq2d
 |-  ( i = N -> ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) )
69 68 adantr
 |-  ( ( i = N /\ d e. { x e. NN | x || i } ) -> ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) )
70 65 69 sumeq12dv
 |-  ( i = N -> sum_ d e. { x e. NN | x || i } ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) )
71 63 70 eqtrid
 |-  ( i = N -> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) )
72 ssrab2
 |-  { x e. NN | x || i } C_ NN
73 dvdsdivcl
 |-  ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( i / j ) e. { x e. NN | x || i } )
74 72 73 sselid
 |-  ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( i / j ) e. NN )
75 fveq2
 |-  ( n = ( i / j ) -> ( log ` n ) = ( log ` ( i / j ) ) )
76 75 oveq1d
 |-  ( n = ( i / j ) -> ( ( log ` n ) ^ 2 ) = ( ( log ` ( i / j ) ) ^ 2 ) )
77 eqid
 |-  ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) = ( n e. NN |-> ( ( log ` n ) ^ 2 ) )
78 ovex
 |-  ( ( log ` n ) ^ 2 ) e. _V
79 76 77 78 fvmpt3i
 |-  ( ( i / j ) e. NN -> ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) = ( ( log ` ( i / j ) ) ^ 2 ) )
80 74 79 syl
 |-  ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) = ( ( log ` ( i / j ) ) ^ 2 ) )
81 80 oveq2d
 |-  ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) = ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) )
82 81 sumeq2dv
 |-  ( i e. NN -> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) = sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) )
83 82 mpteq2ia
 |-  ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) = ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) )
84 sumex
 |-  sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) e. _V
85 71 83 84 fvmpt3i
 |-  ( N e. NN -> ( ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ` N ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) )
86 46 57 85 3eqtr3rd
 |-  ( N e. NN -> sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) )