| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsfi |  |-  ( k e. NN -> { x e. NN | x || k } e. Fin ) | 
						
							| 2 |  | ssrab2 |  |-  { x e. NN | x || k } C_ NN | 
						
							| 3 |  | simpr |  |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> d e. { x e. NN | x || k } ) | 
						
							| 4 | 2 3 | sselid |  |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> d e. NN ) | 
						
							| 5 |  | vmacl |  |-  ( d e. NN -> ( Lam ` d ) e. RR ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( Lam ` d ) e. RR ) | 
						
							| 7 |  | dvdsdivcl |  |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( k / d ) e. { x e. NN | x || k } ) | 
						
							| 8 | 2 7 | sselid |  |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( k / d ) e. NN ) | 
						
							| 9 |  | vmacl |  |-  ( ( k / d ) e. NN -> ( Lam ` ( k / d ) ) e. RR ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( Lam ` ( k / d ) ) e. RR ) | 
						
							| 11 | 6 10 | remulcld |  |-  ( ( k e. NN /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) e. RR ) | 
						
							| 12 | 1 11 | fsumrecl |  |-  ( k e. NN -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) e. RR ) | 
						
							| 13 |  | vmacl |  |-  ( k e. NN -> ( Lam ` k ) e. RR ) | 
						
							| 14 |  | nnrp |  |-  ( k e. NN -> k e. RR+ ) | 
						
							| 15 | 14 | relogcld |  |-  ( k e. NN -> ( log ` k ) e. RR ) | 
						
							| 16 | 13 15 | remulcld |  |-  ( k e. NN -> ( ( Lam ` k ) x. ( log ` k ) ) e. RR ) | 
						
							| 17 | 12 16 | readdcld |  |-  ( k e. NN -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. RR ) | 
						
							| 18 | 17 | recnd |  |-  ( k e. NN -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. CC ) | 
						
							| 19 | 18 | adantl |  |-  ( ( N e. NN /\ k e. NN ) -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. CC ) | 
						
							| 20 | 19 | fmpttd |  |-  ( N e. NN -> ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) : NN --> CC ) | 
						
							| 21 |  | ssrab2 |  |-  { x e. NN | x || n } C_ NN | 
						
							| 22 |  | simpr |  |-  ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> m e. { x e. NN | x || n } ) | 
						
							| 23 | 21 22 | sselid |  |-  ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> m e. NN ) | 
						
							| 24 |  | breq2 |  |-  ( k = m -> ( x || k <-> x || m ) ) | 
						
							| 25 | 24 | rabbidv |  |-  ( k = m -> { x e. NN | x || k } = { x e. NN | x || m } ) | 
						
							| 26 |  | fvoveq1 |  |-  ( k = m -> ( Lam ` ( k / d ) ) = ( Lam ` ( m / d ) ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( k = m -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( k = m /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) ) | 
						
							| 29 | 25 28 | sumeq12dv |  |-  ( k = m -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) ) | 
						
							| 30 |  | fveq2 |  |-  ( k = m -> ( Lam ` k ) = ( Lam ` m ) ) | 
						
							| 31 |  | fveq2 |  |-  ( k = m -> ( log ` k ) = ( log ` m ) ) | 
						
							| 32 | 30 31 | oveq12d |  |-  ( k = m -> ( ( Lam ` k ) x. ( log ` k ) ) = ( ( Lam ` m ) x. ( log ` m ) ) ) | 
						
							| 33 | 29 32 | oveq12d |  |-  ( k = m -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 34 |  | eqid |  |-  ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) = ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) | 
						
							| 35 |  | ovex |  |-  ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) e. _V | 
						
							| 36 | 33 34 35 | fvmpt3i |  |-  ( m e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 37 | 23 36 | syl |  |-  ( ( ( N e. NN /\ n e. NN ) /\ m e. { x e. NN | x || n } ) -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 38 | 37 | sumeq2dv |  |-  ( ( N e. NN /\ n e. NN ) -> sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) = sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 39 |  | logsqvma |  |-  ( n e. NN -> sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) = ( ( log ` n ) ^ 2 ) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( N e. NN /\ n e. NN ) -> sum_ m e. { x e. NN | x || n } ( sum_ d e. { x e. NN | x || m } ( ( Lam ` d ) x. ( Lam ` ( m / d ) ) ) + ( ( Lam ` m ) x. ( log ` m ) ) ) = ( ( log ` n ) ^ 2 ) ) | 
						
							| 41 | 38 40 | eqtr2d |  |-  ( ( N e. NN /\ n e. NN ) -> ( ( log ` n ) ^ 2 ) = sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) ) | 
						
							| 42 | 41 | mpteq2dva |  |-  ( N e. NN -> ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) = ( n e. NN |-> sum_ m e. { x e. NN | x || n } ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` m ) ) ) | 
						
							| 43 | 20 42 | muinv |  |-  ( N e. NN -> ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) = ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ) | 
						
							| 44 | 43 | fveq1d |  |-  ( N e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` N ) = ( ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ` N ) ) | 
						
							| 45 |  | breq2 |  |-  ( k = N -> ( x || k <-> x || N ) ) | 
						
							| 46 | 45 | rabbidv |  |-  ( k = N -> { x e. NN | x || k } = { x e. NN | x || N } ) | 
						
							| 47 |  | fvoveq1 |  |-  ( k = N -> ( Lam ` ( k / d ) ) = ( Lam ` ( N / d ) ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( k = N -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) ) | 
						
							| 49 | 48 | adantr |  |-  ( ( k = N /\ d e. { x e. NN | x || k } ) -> ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) ) | 
						
							| 50 | 46 49 | sumeq12dv |  |-  ( k = N -> sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) = sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) ) | 
						
							| 51 |  | fveq2 |  |-  ( k = N -> ( Lam ` k ) = ( Lam ` N ) ) | 
						
							| 52 |  | fveq2 |  |-  ( k = N -> ( log ` k ) = ( log ` N ) ) | 
						
							| 53 | 51 52 | oveq12d |  |-  ( k = N -> ( ( Lam ` k ) x. ( log ` k ) ) = ( ( Lam ` N ) x. ( log ` N ) ) ) | 
						
							| 54 | 50 53 | oveq12d |  |-  ( k = N -> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) ) | 
						
							| 55 | 54 34 35 | fvmpt3i |  |-  ( N e. NN -> ( ( k e. NN |-> ( sum_ d e. { x e. NN | x || k } ( ( Lam ` d ) x. ( Lam ` ( k / d ) ) ) + ( ( Lam ` k ) x. ( log ` k ) ) ) ) ` N ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) ) | 
						
							| 56 |  | fveq2 |  |-  ( j = d -> ( mmu ` j ) = ( mmu ` d ) ) | 
						
							| 57 |  | oveq2 |  |-  ( j = d -> ( i / j ) = ( i / d ) ) | 
						
							| 58 | 57 | fveq2d |  |-  ( j = d -> ( log ` ( i / j ) ) = ( log ` ( i / d ) ) ) | 
						
							| 59 | 58 | oveq1d |  |-  ( j = d -> ( ( log ` ( i / j ) ) ^ 2 ) = ( ( log ` ( i / d ) ) ^ 2 ) ) | 
						
							| 60 | 56 59 | oveq12d |  |-  ( j = d -> ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) ) | 
						
							| 61 | 60 | cbvsumv |  |-  sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || i } ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) | 
						
							| 62 |  | breq2 |  |-  ( i = N -> ( x || i <-> x || N ) ) | 
						
							| 63 | 62 | rabbidv |  |-  ( i = N -> { x e. NN | x || i } = { x e. NN | x || N } ) | 
						
							| 64 |  | fvoveq1 |  |-  ( i = N -> ( log ` ( i / d ) ) = ( log ` ( N / d ) ) ) | 
						
							| 65 | 64 | oveq1d |  |-  ( i = N -> ( ( log ` ( i / d ) ) ^ 2 ) = ( ( log ` ( N / d ) ) ^ 2 ) ) | 
						
							| 66 | 65 | oveq2d |  |-  ( i = N -> ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( i = N /\ d e. { x e. NN | x || i } ) -> ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) | 
						
							| 68 | 63 67 | sumeq12dv |  |-  ( i = N -> sum_ d e. { x e. NN | x || i } ( ( mmu ` d ) x. ( ( log ` ( i / d ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) | 
						
							| 69 | 61 68 | eqtrid |  |-  ( i = N -> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) | 
						
							| 70 |  | ssrab2 |  |-  { x e. NN | x || i } C_ NN | 
						
							| 71 |  | dvdsdivcl |  |-  ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( i / j ) e. { x e. NN | x || i } ) | 
						
							| 72 | 70 71 | sselid |  |-  ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( i / j ) e. NN ) | 
						
							| 73 |  | fveq2 |  |-  ( n = ( i / j ) -> ( log ` n ) = ( log ` ( i / j ) ) ) | 
						
							| 74 | 73 | oveq1d |  |-  ( n = ( i / j ) -> ( ( log ` n ) ^ 2 ) = ( ( log ` ( i / j ) ) ^ 2 ) ) | 
						
							| 75 |  | eqid |  |-  ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) = ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) | 
						
							| 76 |  | ovex |  |-  ( ( log ` n ) ^ 2 ) e. _V | 
						
							| 77 | 74 75 76 | fvmpt3i |  |-  ( ( i / j ) e. NN -> ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) = ( ( log ` ( i / j ) ) ^ 2 ) ) | 
						
							| 78 | 72 77 | syl |  |-  ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) = ( ( log ` ( i / j ) ) ^ 2 ) ) | 
						
							| 79 | 78 | oveq2d |  |-  ( ( i e. NN /\ j e. { x e. NN | x || i } ) -> ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) = ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) ) | 
						
							| 80 | 79 | sumeq2dv |  |-  ( i e. NN -> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) = sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) ) | 
						
							| 81 | 80 | mpteq2ia |  |-  ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) = ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) ) | 
						
							| 82 |  | sumex |  |-  sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( log ` ( i / j ) ) ^ 2 ) ) e. _V | 
						
							| 83 | 69 81 82 | fvmpt3i |  |-  ( N e. NN -> ( ( i e. NN |-> sum_ j e. { x e. NN | x || i } ( ( mmu ` j ) x. ( ( n e. NN |-> ( ( log ` n ) ^ 2 ) ) ` ( i / j ) ) ) ) ` N ) = sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) ) | 
						
							| 84 | 44 55 83 | 3eqtr3rd |  |-  ( N e. NN -> sum_ d e. { x e. NN | x || N } ( ( mmu ` d ) x. ( ( log ` ( N / d ) ) ^ 2 ) ) = ( sum_ d e. { x e. NN | x || N } ( ( Lam ` d ) x. ( Lam ` ( N / d ) ) ) + ( ( Lam ` N ) x. ( log ` N ) ) ) ) |