| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( 1 ... ( |_ ` A ) ) e. Fin ) | 
						
							| 2 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) | 
						
							| 4 | 3 | nnrpd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. RR+ ) | 
						
							| 5 | 4 | relogcld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 6 | 5 | resqcld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` n ) ^ 2 ) e. RR ) | 
						
							| 7 | 1 6 | fsumrecl |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) e. RR ) | 
						
							| 8 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> A e. RR ) | 
						
							| 10 |  | relogcl |  |-  ( A e. RR+ -> ( log ` A ) e. RR ) | 
						
							| 11 | 10 | adantr |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( log ` A ) e. RR ) | 
						
							| 12 | 11 | resqcld |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( log ` A ) ^ 2 ) e. RR ) | 
						
							| 13 |  | 2re |  |-  2 e. RR | 
						
							| 14 |  | remulcl |  |-  ( ( 2 e. RR /\ ( log ` A ) e. RR ) -> ( 2 x. ( log ` A ) ) e. RR ) | 
						
							| 15 | 13 11 14 | sylancr |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( 2 x. ( log ` A ) ) e. RR ) | 
						
							| 16 |  | resubcl |  |-  ( ( 2 e. RR /\ ( 2 x. ( log ` A ) ) e. RR ) -> ( 2 - ( 2 x. ( log ` A ) ) ) e. RR ) | 
						
							| 17 | 13 15 16 | sylancr |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( 2 - ( 2 x. ( log ` A ) ) ) e. RR ) | 
						
							| 18 | 12 17 | readdcld |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) e. RR ) | 
						
							| 19 | 9 18 | remulcld |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) e. RR ) | 
						
							| 20 | 7 19 | resubcld |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) e. CC ) | 
						
							| 22 | 21 | abscld |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) e. RR ) | 
						
							| 23 |  | resubcl |  |-  ( ( ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) e. RR /\ 2 e. RR ) -> ( ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) - 2 ) e. RR ) | 
						
							| 24 | 22 13 23 | sylancl |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) - 2 ) e. RR ) | 
						
							| 25 |  | 2cn |  |-  2 e. CC | 
						
							| 26 | 25 | negcli |  |-  -u 2 e. CC | 
						
							| 27 |  | subcl |  |-  ( ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) e. CC /\ -u 2 e. CC ) -> ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) - -u 2 ) e. CC ) | 
						
							| 28 | 21 26 27 | sylancl |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) - -u 2 ) e. CC ) | 
						
							| 29 | 28 | abscld |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) - -u 2 ) ) e. RR ) | 
						
							| 30 | 25 | absnegi |  |-  ( abs ` -u 2 ) = ( abs ` 2 ) | 
						
							| 31 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 32 |  | absid |  |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) | 
						
							| 33 | 13 31 32 | mp2an |  |-  ( abs ` 2 ) = 2 | 
						
							| 34 | 30 33 | eqtri |  |-  ( abs ` -u 2 ) = 2 | 
						
							| 35 | 34 | oveq2i |  |-  ( ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) - ( abs ` -u 2 ) ) = ( ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) - 2 ) | 
						
							| 36 |  | abs2dif |  |-  ( ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) e. CC /\ -u 2 e. CC ) -> ( ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) - ( abs ` -u 2 ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) - -u 2 ) ) ) | 
						
							| 37 | 21 26 36 | sylancl |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) - ( abs ` -u 2 ) ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) - -u 2 ) ) ) | 
						
							| 38 | 35 37 | eqbrtrrid |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) - 2 ) <_ ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) - -u 2 ) ) ) | 
						
							| 39 |  | fveq2 |  |-  ( x = A -> ( |_ ` x ) = ( |_ ` A ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( x = A -> ( 1 ... ( |_ ` x ) ) = ( 1 ... ( |_ ` A ) ) ) | 
						
							| 41 | 40 | sumeq1d |  |-  ( x = A -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) ) | 
						
							| 42 |  | id |  |-  ( x = A -> x = A ) | 
						
							| 43 |  | fveq2 |  |-  ( x = A -> ( log ` x ) = ( log ` A ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( x = A -> ( ( log ` x ) ^ 2 ) = ( ( log ` A ) ^ 2 ) ) | 
						
							| 45 | 43 | oveq2d |  |-  ( x = A -> ( 2 x. ( log ` x ) ) = ( 2 x. ( log ` A ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( x = A -> ( 2 - ( 2 x. ( log ` x ) ) ) = ( 2 - ( 2 x. ( log ` A ) ) ) ) | 
						
							| 47 | 44 46 | oveq12d |  |-  ( x = A -> ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) = ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) | 
						
							| 48 | 42 47 | oveq12d |  |-  ( x = A -> ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) = ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) | 
						
							| 49 | 41 48 | oveq12d |  |-  ( x = A -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) | 
						
							| 50 |  | eqid |  |-  ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) | 
						
							| 51 |  | ovex |  |-  ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) e. _V | 
						
							| 52 | 49 50 51 | fvmpt3i |  |-  ( A e. RR+ -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) ` A ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) ` A ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) | 
						
							| 54 |  | 1rp |  |-  1 e. RR+ | 
						
							| 55 |  | fveq2 |  |-  ( x = 1 -> ( |_ ` x ) = ( |_ ` 1 ) ) | 
						
							| 56 |  | 1z |  |-  1 e. ZZ | 
						
							| 57 |  | flid |  |-  ( 1 e. ZZ -> ( |_ ` 1 ) = 1 ) | 
						
							| 58 | 56 57 | ax-mp |  |-  ( |_ ` 1 ) = 1 | 
						
							| 59 | 55 58 | eqtrdi |  |-  ( x = 1 -> ( |_ ` x ) = 1 ) | 
						
							| 60 | 59 | oveq2d |  |-  ( x = 1 -> ( 1 ... ( |_ ` x ) ) = ( 1 ... 1 ) ) | 
						
							| 61 | 60 | sumeq1d |  |-  ( x = 1 -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) = sum_ n e. ( 1 ... 1 ) ( ( log ` n ) ^ 2 ) ) | 
						
							| 62 |  | 0cn |  |-  0 e. CC | 
						
							| 63 |  | fveq2 |  |-  ( n = 1 -> ( log ` n ) = ( log ` 1 ) ) | 
						
							| 64 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 65 | 63 64 | eqtrdi |  |-  ( n = 1 -> ( log ` n ) = 0 ) | 
						
							| 66 | 65 | sq0id |  |-  ( n = 1 -> ( ( log ` n ) ^ 2 ) = 0 ) | 
						
							| 67 | 66 | fsum1 |  |-  ( ( 1 e. ZZ /\ 0 e. CC ) -> sum_ n e. ( 1 ... 1 ) ( ( log ` n ) ^ 2 ) = 0 ) | 
						
							| 68 | 56 62 67 | mp2an |  |-  sum_ n e. ( 1 ... 1 ) ( ( log ` n ) ^ 2 ) = 0 | 
						
							| 69 | 61 68 | eqtrdi |  |-  ( x = 1 -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) = 0 ) | 
						
							| 70 |  | id |  |-  ( x = 1 -> x = 1 ) | 
						
							| 71 |  | fveq2 |  |-  ( x = 1 -> ( log ` x ) = ( log ` 1 ) ) | 
						
							| 72 | 71 64 | eqtrdi |  |-  ( x = 1 -> ( log ` x ) = 0 ) | 
						
							| 73 | 72 | sq0id |  |-  ( x = 1 -> ( ( log ` x ) ^ 2 ) = 0 ) | 
						
							| 74 | 72 | oveq2d |  |-  ( x = 1 -> ( 2 x. ( log ` x ) ) = ( 2 x. 0 ) ) | 
						
							| 75 |  | 2t0e0 |  |-  ( 2 x. 0 ) = 0 | 
						
							| 76 | 74 75 | eqtrdi |  |-  ( x = 1 -> ( 2 x. ( log ` x ) ) = 0 ) | 
						
							| 77 | 76 | oveq2d |  |-  ( x = 1 -> ( 2 - ( 2 x. ( log ` x ) ) ) = ( 2 - 0 ) ) | 
						
							| 78 | 25 | subid1i |  |-  ( 2 - 0 ) = 2 | 
						
							| 79 | 77 78 | eqtrdi |  |-  ( x = 1 -> ( 2 - ( 2 x. ( log ` x ) ) ) = 2 ) | 
						
							| 80 | 73 79 | oveq12d |  |-  ( x = 1 -> ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) = ( 0 + 2 ) ) | 
						
							| 81 | 25 | addlidi |  |-  ( 0 + 2 ) = 2 | 
						
							| 82 | 80 81 | eqtrdi |  |-  ( x = 1 -> ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) = 2 ) | 
						
							| 83 | 70 82 | oveq12d |  |-  ( x = 1 -> ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) = ( 1 x. 2 ) ) | 
						
							| 84 | 25 | mullidi |  |-  ( 1 x. 2 ) = 2 | 
						
							| 85 | 83 84 | eqtrdi |  |-  ( x = 1 -> ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) = 2 ) | 
						
							| 86 | 69 85 | oveq12d |  |-  ( x = 1 -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) = ( 0 - 2 ) ) | 
						
							| 87 |  | df-neg |  |-  -u 2 = ( 0 - 2 ) | 
						
							| 88 | 86 87 | eqtr4di |  |-  ( x = 1 -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) = -u 2 ) | 
						
							| 89 | 88 50 51 | fvmpt3i |  |-  ( 1 e. RR+ -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) ` 1 ) = -u 2 ) | 
						
							| 90 | 54 89 | mp1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) ` 1 ) = -u 2 ) | 
						
							| 91 | 53 90 | oveq12d |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) ` A ) - ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) ` 1 ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) - -u 2 ) ) | 
						
							| 92 | 91 | fveq2d |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) ` A ) - ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) ` 1 ) ) ) = ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) - -u 2 ) ) ) | 
						
							| 93 |  | ioorp |  |-  ( 0 (,) +oo ) = RR+ | 
						
							| 94 | 93 | eqcomi |  |-  RR+ = ( 0 (,) +oo ) | 
						
							| 95 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 96 | 56 | a1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 e. ZZ ) | 
						
							| 97 |  | 1red |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 e. RR ) | 
						
							| 98 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 99 | 98 | a1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> +oo e. RR* ) | 
						
							| 100 |  | 1re |  |-  1 e. RR | 
						
							| 101 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 102 | 100 101 | nn0addge1i |  |-  1 <_ ( 1 + 1 ) | 
						
							| 103 | 102 | a1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 <_ ( 1 + 1 ) ) | 
						
							| 104 |  | 0red |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> 0 e. RR ) | 
						
							| 105 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 106 | 105 | adantl |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> x e. RR ) | 
						
							| 107 |  | simpr |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 108 | 107 | relogcld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( log ` x ) e. RR ) | 
						
							| 109 | 108 | resqcld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( log ` x ) ^ 2 ) e. RR ) | 
						
							| 110 |  | remulcl |  |-  ( ( 2 e. RR /\ ( log ` x ) e. RR ) -> ( 2 x. ( log ` x ) ) e. RR ) | 
						
							| 111 | 13 108 110 | sylancr |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( 2 x. ( log ` x ) ) e. RR ) | 
						
							| 112 |  | resubcl |  |-  ( ( 2 e. RR /\ ( 2 x. ( log ` x ) ) e. RR ) -> ( 2 - ( 2 x. ( log ` x ) ) ) e. RR ) | 
						
							| 113 | 13 111 112 | sylancr |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( 2 - ( 2 x. ( log ` x ) ) ) e. RR ) | 
						
							| 114 | 109 113 | readdcld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) e. RR ) | 
						
							| 115 | 106 114 | remulcld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) e. RR ) | 
						
							| 116 |  | nnrp |  |-  ( x e. NN -> x e. RR+ ) | 
						
							| 117 | 116 109 | sylan2 |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. NN ) -> ( ( log ` x ) ^ 2 ) e. RR ) | 
						
							| 118 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 119 | 118 | a1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> RR e. { RR , CC } ) | 
						
							| 120 | 106 | recnd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> x e. CC ) | 
						
							| 121 |  | 1red |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> 1 e. RR ) | 
						
							| 122 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 123 | 122 | adantl |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR ) -> x e. CC ) | 
						
							| 124 |  | 1red |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR ) -> 1 e. RR ) | 
						
							| 125 | 119 | dvmptid |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) | 
						
							| 126 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 127 | 126 | a1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> RR+ C_ RR ) | 
						
							| 128 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 129 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 130 |  | iooretop |  |-  ( 0 (,) +oo ) e. ( topGen ` ran (,) ) | 
						
							| 131 | 93 130 | eqeltrri |  |-  RR+ e. ( topGen ` ran (,) ) | 
						
							| 132 | 131 | a1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> RR+ e. ( topGen ` ran (,) ) ) | 
						
							| 133 | 119 123 124 125 127 128 129 132 | dvmptres |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> x ) ) = ( x e. RR+ |-> 1 ) ) | 
						
							| 134 | 114 | recnd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) e. CC ) | 
						
							| 135 |  | resubcl |  |-  ( ( ( 2 x. ( log ` x ) ) e. RR /\ 2 e. RR ) -> ( ( 2 x. ( log ` x ) ) - 2 ) e. RR ) | 
						
							| 136 | 111 13 135 | sylancl |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( 2 x. ( log ` x ) ) - 2 ) e. RR ) | 
						
							| 137 | 136 107 | rerpdivcld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( 2 x. ( log ` x ) ) - 2 ) / x ) e. RR ) | 
						
							| 138 | 109 | recnd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( log ` x ) ^ 2 ) e. CC ) | 
						
							| 139 | 111 | recnd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( 2 x. ( log ` x ) ) e. CC ) | 
						
							| 140 | 107 | rpreccld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) | 
						
							| 141 | 140 | rpcnd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( 1 / x ) e. CC ) | 
						
							| 142 | 139 141 | mulcld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) e. CC ) | 
						
							| 143 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 144 | 143 | a1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> CC e. { RR , CC } ) | 
						
							| 145 | 108 | recnd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( log ` x ) e. CC ) | 
						
							| 146 |  | sqcl |  |-  ( y e. CC -> ( y ^ 2 ) e. CC ) | 
						
							| 147 | 146 | adantl |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ y e. CC ) -> ( y ^ 2 ) e. CC ) | 
						
							| 148 |  | simpr |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ y e. CC ) -> y e. CC ) | 
						
							| 149 |  | mulcl |  |-  ( ( 2 e. CC /\ y e. CC ) -> ( 2 x. y ) e. CC ) | 
						
							| 150 | 25 148 149 | sylancr |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ y e. CC ) -> ( 2 x. y ) e. CC ) | 
						
							| 151 |  | relogf1o |  |-  ( log |` RR+ ) : RR+ -1-1-onto-> RR | 
						
							| 152 |  | f1of |  |-  ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) | 
						
							| 153 | 151 152 | mp1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( log |` RR+ ) : RR+ --> RR ) | 
						
							| 154 | 153 | feqmptd |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) | 
						
							| 155 |  | fvres |  |-  ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) | 
						
							| 156 | 155 | mpteq2ia |  |-  ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) | 
						
							| 157 | 154 156 | eqtrdi |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) | 
						
							| 158 | 157 | oveq2d |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) | 
						
							| 159 |  | dvrelog |  |-  ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) | 
						
							| 160 | 158 159 | eqtr3di |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) | 
						
							| 161 |  | 2nn |  |-  2 e. NN | 
						
							| 162 |  | dvexp |  |-  ( 2 e. NN -> ( CC _D ( y e. CC |-> ( y ^ 2 ) ) ) = ( y e. CC |-> ( 2 x. ( y ^ ( 2 - 1 ) ) ) ) ) | 
						
							| 163 | 161 162 | mp1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( CC _D ( y e. CC |-> ( y ^ 2 ) ) ) = ( y e. CC |-> ( 2 x. ( y ^ ( 2 - 1 ) ) ) ) ) | 
						
							| 164 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 165 | 164 | oveq2i |  |-  ( y ^ ( 2 - 1 ) ) = ( y ^ 1 ) | 
						
							| 166 |  | exp1 |  |-  ( y e. CC -> ( y ^ 1 ) = y ) | 
						
							| 167 | 165 166 | eqtrid |  |-  ( y e. CC -> ( y ^ ( 2 - 1 ) ) = y ) | 
						
							| 168 | 167 | oveq2d |  |-  ( y e. CC -> ( 2 x. ( y ^ ( 2 - 1 ) ) ) = ( 2 x. y ) ) | 
						
							| 169 | 168 | mpteq2ia |  |-  ( y e. CC |-> ( 2 x. ( y ^ ( 2 - 1 ) ) ) ) = ( y e. CC |-> ( 2 x. y ) ) | 
						
							| 170 | 163 169 | eqtrdi |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( CC _D ( y e. CC |-> ( y ^ 2 ) ) ) = ( y e. CC |-> ( 2 x. y ) ) ) | 
						
							| 171 |  | oveq1 |  |-  ( y = ( log ` x ) -> ( y ^ 2 ) = ( ( log ` x ) ^ 2 ) ) | 
						
							| 172 |  | oveq2 |  |-  ( y = ( log ` x ) -> ( 2 x. y ) = ( 2 x. ( log ` x ) ) ) | 
						
							| 173 | 119 144 145 140 147 150 160 170 171 172 | dvmptco |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> ( ( log ` x ) ^ 2 ) ) ) = ( x e. RR+ |-> ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) ) ) | 
						
							| 174 | 113 | recnd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( 2 - ( 2 x. ( log ` x ) ) ) e. CC ) | 
						
							| 175 |  | ovexd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( 0 - ( 2 x. ( 1 / x ) ) ) e. _V ) | 
						
							| 176 |  | 2cnd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> 2 e. CC ) | 
						
							| 177 |  | 0red |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> 0 e. RR ) | 
						
							| 178 |  | 2cnd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR ) -> 2 e. CC ) | 
						
							| 179 |  | 0red |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR ) -> 0 e. RR ) | 
						
							| 180 |  | 2cnd |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> 2 e. CC ) | 
						
							| 181 | 119 180 | dvmptc |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR |-> 2 ) ) = ( x e. RR |-> 0 ) ) | 
						
							| 182 | 119 178 179 181 127 128 129 132 | dvmptres |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> 2 ) ) = ( x e. RR+ |-> 0 ) ) | 
						
							| 183 |  | mulcl |  |-  ( ( 2 e. CC /\ ( 1 / x ) e. CC ) -> ( 2 x. ( 1 / x ) ) e. CC ) | 
						
							| 184 | 25 141 183 | sylancr |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( 2 x. ( 1 / x ) ) e. CC ) | 
						
							| 185 | 119 145 140 160 180 | dvmptcmul |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( 2 x. ( 1 / x ) ) ) ) | 
						
							| 186 | 119 176 177 182 139 184 185 | dvmptsub |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> ( 2 - ( 2 x. ( log ` x ) ) ) ) ) = ( x e. RR+ |-> ( 0 - ( 2 x. ( 1 / x ) ) ) ) ) | 
						
							| 187 | 119 138 142 173 174 175 186 | dvmptadd |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) = ( x e. RR+ |-> ( ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) + ( 0 - ( 2 x. ( 1 / x ) ) ) ) ) ) | 
						
							| 188 | 139 176 141 | subdird |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( 2 x. ( log ` x ) ) - 2 ) x. ( 1 / x ) ) = ( ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) - ( 2 x. ( 1 / x ) ) ) ) | 
						
							| 189 | 136 | recnd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( 2 x. ( log ` x ) ) - 2 ) e. CC ) | 
						
							| 190 |  | rpne0 |  |-  ( x e. RR+ -> x =/= 0 ) | 
						
							| 191 | 190 | adantl |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> x =/= 0 ) | 
						
							| 192 | 189 120 191 | divrecd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( 2 x. ( log ` x ) ) - 2 ) / x ) = ( ( ( 2 x. ( log ` x ) ) - 2 ) x. ( 1 / x ) ) ) | 
						
							| 193 |  | df-neg |  |-  -u ( 2 x. ( 1 / x ) ) = ( 0 - ( 2 x. ( 1 / x ) ) ) | 
						
							| 194 | 193 | oveq2i |  |-  ( ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) + -u ( 2 x. ( 1 / x ) ) ) = ( ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) + ( 0 - ( 2 x. ( 1 / x ) ) ) ) | 
						
							| 195 | 142 184 | negsubd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) + -u ( 2 x. ( 1 / x ) ) ) = ( ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) - ( 2 x. ( 1 / x ) ) ) ) | 
						
							| 196 | 194 195 | eqtr3id |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) + ( 0 - ( 2 x. ( 1 / x ) ) ) ) = ( ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) - ( 2 x. ( 1 / x ) ) ) ) | 
						
							| 197 | 188 192 196 | 3eqtr4rd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) + ( 0 - ( 2 x. ( 1 / x ) ) ) ) = ( ( ( 2 x. ( log ` x ) ) - 2 ) / x ) ) | 
						
							| 198 | 197 | mpteq2dva |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( x e. RR+ |-> ( ( ( 2 x. ( log ` x ) ) x. ( 1 / x ) ) + ( 0 - ( 2 x. ( 1 / x ) ) ) ) ) = ( x e. RR+ |-> ( ( ( 2 x. ( log ` x ) ) - 2 ) / x ) ) ) | 
						
							| 199 | 187 198 | eqtrd |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) = ( x e. RR+ |-> ( ( ( 2 x. ( log ` x ) ) - 2 ) / x ) ) ) | 
						
							| 200 | 119 120 121 133 134 137 199 | dvmptmul |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) = ( x e. RR+ |-> ( ( 1 x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) + ( ( ( ( 2 x. ( log ` x ) ) - 2 ) / x ) x. x ) ) ) ) | 
						
							| 201 | 134 | mullidd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( 1 x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) = ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) | 
						
							| 202 | 138 139 176 | subsub2d |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( log ` x ) ^ 2 ) - ( ( 2 x. ( log ` x ) ) - 2 ) ) = ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) | 
						
							| 203 | 201 202 | eqtr4d |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( 1 x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) = ( ( ( log ` x ) ^ 2 ) - ( ( 2 x. ( log ` x ) ) - 2 ) ) ) | 
						
							| 204 | 189 120 191 | divcan1d |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( ( 2 x. ( log ` x ) ) - 2 ) / x ) x. x ) = ( ( 2 x. ( log ` x ) ) - 2 ) ) | 
						
							| 205 | 203 204 | oveq12d |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( 1 x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) + ( ( ( ( 2 x. ( log ` x ) ) - 2 ) / x ) x. x ) ) = ( ( ( ( log ` x ) ^ 2 ) - ( ( 2 x. ( log ` x ) ) - 2 ) ) + ( ( 2 x. ( log ` x ) ) - 2 ) ) ) | 
						
							| 206 | 138 189 | npcand |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( ( ( log ` x ) ^ 2 ) - ( ( 2 x. ( log ` x ) ) - 2 ) ) + ( ( 2 x. ( log ` x ) ) - 2 ) ) = ( ( log ` x ) ^ 2 ) ) | 
						
							| 207 | 205 206 | eqtrd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( 1 x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) + ( ( ( ( 2 x. ( log ` x ) ) - 2 ) / x ) x. x ) ) = ( ( log ` x ) ^ 2 ) ) | 
						
							| 208 | 207 | mpteq2dva |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( x e. RR+ |-> ( ( 1 x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) + ( ( ( ( 2 x. ( log ` x ) ) - 2 ) / x ) x. x ) ) ) = ( x e. RR+ |-> ( ( log ` x ) ^ 2 ) ) ) | 
						
							| 209 | 200 208 | eqtrd |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) = ( x e. RR+ |-> ( ( log ` x ) ^ 2 ) ) ) | 
						
							| 210 |  | fveq2 |  |-  ( x = n -> ( log ` x ) = ( log ` n ) ) | 
						
							| 211 | 210 | oveq1d |  |-  ( x = n -> ( ( log ` x ) ^ 2 ) = ( ( log ` n ) ^ 2 ) ) | 
						
							| 212 |  | simp32 |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> x <_ n ) | 
						
							| 213 |  | simp2l |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> x e. RR+ ) | 
						
							| 214 |  | simp2r |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> n e. RR+ ) | 
						
							| 215 | 213 214 | logled |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> ( x <_ n <-> ( log ` x ) <_ ( log ` n ) ) ) | 
						
							| 216 | 212 215 | mpbid |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> ( log ` x ) <_ ( log ` n ) ) | 
						
							| 217 | 213 | relogcld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 218 | 214 | relogcld |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> ( log ` n ) e. RR ) | 
						
							| 219 |  | simp31 |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> 1 <_ x ) | 
						
							| 220 |  | logleb |  |-  ( ( 1 e. RR+ /\ x e. RR+ ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) | 
						
							| 221 | 54 213 220 | sylancr |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) | 
						
							| 222 | 219 221 | mpbid |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> ( log ` 1 ) <_ ( log ` x ) ) | 
						
							| 223 | 64 222 | eqbrtrrid |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> 0 <_ ( log ` x ) ) | 
						
							| 224 | 214 | rpred |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> n e. RR ) | 
						
							| 225 |  | 1red |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> 1 e. RR ) | 
						
							| 226 | 213 | rpred |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> x e. RR ) | 
						
							| 227 | 225 226 224 219 212 | letrd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> 1 <_ n ) | 
						
							| 228 | 224 227 | logge0d |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> 0 <_ ( log ` n ) ) | 
						
							| 229 | 217 218 223 228 | le2sqd |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> ( ( log ` x ) <_ ( log ` n ) <-> ( ( log ` x ) ^ 2 ) <_ ( ( log ` n ) ^ 2 ) ) ) | 
						
							| 230 | 216 229 | mpbid |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> ( ( log ` x ) ^ 2 ) <_ ( ( log ` n ) ^ 2 ) ) | 
						
							| 231 |  | relogcl |  |-  ( x e. RR+ -> ( log ` x ) e. RR ) | 
						
							| 232 | 231 | ad2antrl |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` x ) e. RR ) | 
						
							| 233 | 232 | sqge0d |  |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( ( log ` x ) ^ 2 ) ) | 
						
							| 234 | 54 | a1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 e. RR+ ) | 
						
							| 235 |  | simpl |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> A e. RR+ ) | 
						
							| 236 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 237 | 236 | a1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 <_ 1 ) | 
						
							| 238 |  | simpr |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 <_ A ) | 
						
							| 239 | 9 | rexrd |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> A e. RR* ) | 
						
							| 240 |  | pnfge |  |-  ( A e. RR* -> A <_ +oo ) | 
						
							| 241 | 239 240 | syl |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> A <_ +oo ) | 
						
							| 242 | 94 95 96 97 99 103 104 115 109 117 209 211 230 50 233 234 235 237 238 241 44 | dvfsum2 |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) ` A ) - ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` n ) ^ 2 ) - ( x x. ( ( ( log ` x ) ^ 2 ) + ( 2 - ( 2 x. ( log ` x ) ) ) ) ) ) ) ` 1 ) ) ) <_ ( ( log ` A ) ^ 2 ) ) | 
						
							| 243 | 92 242 | eqbrtrrd |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) - -u 2 ) ) <_ ( ( log ` A ) ^ 2 ) ) | 
						
							| 244 | 24 29 12 38 243 | letrd |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) - 2 ) <_ ( ( log ` A ) ^ 2 ) ) | 
						
							| 245 | 13 | a1i |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> 2 e. RR ) | 
						
							| 246 | 22 245 12 | lesubaddd |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) - 2 ) <_ ( ( log ` A ) ^ 2 ) <-> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) <_ ( ( ( log ` A ) ^ 2 ) + 2 ) ) ) | 
						
							| 247 | 244 246 | mpbid |  |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) ^ 2 ) - ( A x. ( ( ( log ` A ) ^ 2 ) + ( 2 - ( 2 x. ( log ` A ) ) ) ) ) ) ) <_ ( ( ( log ` A ) ^ 2 ) + 2 ) ) |