| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 2 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 4 | 3 | nnrpd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 5 | 4 | relogcld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 6 | 5 | resqcld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( ( log ‘ 𝑛 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 7 | 1 6 | fsumrecl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 8 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 10 |  | relogcl | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 12 | 11 | resqcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( log ‘ 𝐴 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 13 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 14 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( log ‘ 𝐴 )  ∈  ℝ )  →  ( 2  ·  ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 15 | 13 11 14 | sylancr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( 2  ·  ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 16 |  | resubcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( 2  ·  ( log ‘ 𝐴 ) )  ∈  ℝ )  →  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 17 | 13 15 16 | sylancr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 18 | 12 17 | readdcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) )  ∈  ℝ ) | 
						
							| 19 | 9 18 | remulcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) )  ∈  ℝ ) | 
						
							| 20 | 7 19 | resubcld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 21 | 20 | recnd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  ∈  ℂ ) | 
						
							| 22 | 21 | abscld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 23 |  | resubcl | ⊢ ( ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  −  2 )  ∈  ℝ ) | 
						
							| 24 | 22 13 23 | sylancl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  −  2 )  ∈  ℝ ) | 
						
							| 25 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 26 | 25 | negcli | ⊢ - 2  ∈  ℂ | 
						
							| 27 |  | subcl | ⊢ ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  ∈  ℂ  ∧  - 2  ∈  ℂ )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  −  - 2 )  ∈  ℂ ) | 
						
							| 28 | 21 26 27 | sylancl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  −  - 2 )  ∈  ℂ ) | 
						
							| 29 | 28 | abscld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  −  - 2 ) )  ∈  ℝ ) | 
						
							| 30 | 25 | absnegi | ⊢ ( abs ‘ - 2 )  =  ( abs ‘ 2 ) | 
						
							| 31 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 32 |  | absid | ⊢ ( ( 2  ∈  ℝ  ∧  0  ≤  2 )  →  ( abs ‘ 2 )  =  2 ) | 
						
							| 33 | 13 31 32 | mp2an | ⊢ ( abs ‘ 2 )  =  2 | 
						
							| 34 | 30 33 | eqtri | ⊢ ( abs ‘ - 2 )  =  2 | 
						
							| 35 | 34 | oveq2i | ⊢ ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  −  ( abs ‘ - 2 ) )  =  ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  −  2 ) | 
						
							| 36 |  | abs2dif | ⊢ ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  ∈  ℂ  ∧  - 2  ∈  ℂ )  →  ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  −  ( abs ‘ - 2 ) )  ≤  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  −  - 2 ) ) ) | 
						
							| 37 | 21 26 36 | sylancl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  −  ( abs ‘ - 2 ) )  ≤  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  −  - 2 ) ) ) | 
						
							| 38 | 35 37 | eqbrtrrid | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  −  2 )  ≤  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  −  - 2 ) ) ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( ⌊ ‘ 𝑥 )  =  ( ⌊ ‘ 𝐴 ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝑥  =  𝐴  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  =  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 41 | 40 | sumeq1d | ⊢ ( 𝑥  =  𝐴  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 42 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( log ‘ 𝑥 )  =  ( log ‘ 𝐴 ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( log ‘ 𝑥 ) ↑ 2 )  =  ( ( log ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 45 | 43 | oveq2d | ⊢ ( 𝑥  =  𝐴  →  ( 2  ·  ( log ‘ 𝑥 ) )  =  ( 2  ·  ( log ‘ 𝐴 ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝑥  =  𝐴  →  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  =  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 47 | 44 46 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  =  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 48 | 42 47 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  =  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 49 | 41 48 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 50 |  | eqid | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) | 
						
							| 51 |  | ovex | ⊢ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) )  ∈  V | 
						
							| 52 | 49 50 51 | fvmpt3i | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 𝐴 )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 𝐴 )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 54 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( ⌊ ‘ 𝑥 )  =  ( ⌊ ‘ 1 ) ) | 
						
							| 56 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 57 |  | flid | ⊢ ( 1  ∈  ℤ  →  ( ⌊ ‘ 1 )  =  1 ) | 
						
							| 58 | 56 57 | ax-mp | ⊢ ( ⌊ ‘ 1 )  =  1 | 
						
							| 59 | 55 58 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( ⌊ ‘ 𝑥 )  =  1 ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( 𝑥  =  1  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  =  ( 1 ... 1 ) ) | 
						
							| 61 | 60 | sumeq1d | ⊢ ( 𝑥  =  1  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  =  Σ 𝑛  ∈  ( 1 ... 1 ) ( ( log ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 62 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( log ‘ 𝑛 )  =  ( log ‘ 1 ) ) | 
						
							| 64 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 65 | 63 64 | eqtrdi | ⊢ ( 𝑛  =  1  →  ( log ‘ 𝑛 )  =  0 ) | 
						
							| 66 | 65 | sq0id | ⊢ ( 𝑛  =  1  →  ( ( log ‘ 𝑛 ) ↑ 2 )  =  0 ) | 
						
							| 67 | 66 | fsum1 | ⊢ ( ( 1  ∈  ℤ  ∧  0  ∈  ℂ )  →  Σ 𝑛  ∈  ( 1 ... 1 ) ( ( log ‘ 𝑛 ) ↑ 2 )  =  0 ) | 
						
							| 68 | 56 62 67 | mp2an | ⊢ Σ 𝑛  ∈  ( 1 ... 1 ) ( ( log ‘ 𝑛 ) ↑ 2 )  =  0 | 
						
							| 69 | 61 68 | eqtrdi | ⊢ ( 𝑥  =  1  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  =  0 ) | 
						
							| 70 |  | id | ⊢ ( 𝑥  =  1  →  𝑥  =  1 ) | 
						
							| 71 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( log ‘ 𝑥 )  =  ( log ‘ 1 ) ) | 
						
							| 72 | 71 64 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( log ‘ 𝑥 )  =  0 ) | 
						
							| 73 | 72 | sq0id | ⊢ ( 𝑥  =  1  →  ( ( log ‘ 𝑥 ) ↑ 2 )  =  0 ) | 
						
							| 74 | 72 | oveq2d | ⊢ ( 𝑥  =  1  →  ( 2  ·  ( log ‘ 𝑥 ) )  =  ( 2  ·  0 ) ) | 
						
							| 75 |  | 2t0e0 | ⊢ ( 2  ·  0 )  =  0 | 
						
							| 76 | 74 75 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( 2  ·  ( log ‘ 𝑥 ) )  =  0 ) | 
						
							| 77 | 76 | oveq2d | ⊢ ( 𝑥  =  1  →  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  =  ( 2  −  0 ) ) | 
						
							| 78 | 25 | subid1i | ⊢ ( 2  −  0 )  =  2 | 
						
							| 79 | 77 78 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  =  2 ) | 
						
							| 80 | 73 79 | oveq12d | ⊢ ( 𝑥  =  1  →  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  =  ( 0  +  2 ) ) | 
						
							| 81 | 25 | addlidi | ⊢ ( 0  +  2 )  =  2 | 
						
							| 82 | 80 81 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  =  2 ) | 
						
							| 83 | 70 82 | oveq12d | ⊢ ( 𝑥  =  1  →  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  =  ( 1  ·  2 ) ) | 
						
							| 84 | 25 | mullidi | ⊢ ( 1  ·  2 )  =  2 | 
						
							| 85 | 83 84 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  =  2 ) | 
						
							| 86 | 69 85 | oveq12d | ⊢ ( 𝑥  =  1  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) )  =  ( 0  −  2 ) ) | 
						
							| 87 |  | df-neg | ⊢ - 2  =  ( 0  −  2 ) | 
						
							| 88 | 86 87 | eqtr4di | ⊢ ( 𝑥  =  1  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) )  =  - 2 ) | 
						
							| 89 | 88 50 51 | fvmpt3i | ⊢ ( 1  ∈  ℝ+  →  ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 1 )  =  - 2 ) | 
						
							| 90 | 54 89 | mp1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 1 )  =  - 2 ) | 
						
							| 91 | 53 90 | oveq12d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 𝐴 )  −  ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 1 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  −  - 2 ) ) | 
						
							| 92 | 91 | fveq2d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( abs ‘ ( ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 𝐴 )  −  ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 1 ) ) )  =  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  −  - 2 ) ) ) | 
						
							| 93 |  | ioorp | ⊢ ( 0 (,) +∞ )  =  ℝ+ | 
						
							| 94 | 93 | eqcomi | ⊢ ℝ+  =  ( 0 (,) +∞ ) | 
						
							| 95 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 96 | 56 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  1  ∈  ℤ ) | 
						
							| 97 |  | 1red | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  1  ∈  ℝ ) | 
						
							| 98 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 99 | 98 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  +∞  ∈  ℝ* ) | 
						
							| 100 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 101 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 102 | 100 101 | nn0addge1i | ⊢ 1  ≤  ( 1  +  1 ) | 
						
							| 103 | 102 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  1  ≤  ( 1  +  1 ) ) | 
						
							| 104 |  | 0red | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 105 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 106 | 105 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ ) | 
						
							| 107 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 108 | 107 | relogcld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 109 | 108 | resqcld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( log ‘ 𝑥 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 110 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( log ‘ 𝑥 )  ∈  ℝ )  →  ( 2  ·  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 111 | 13 108 110 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 2  ·  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 112 |  | resubcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( 2  ·  ( log ‘ 𝑥 ) )  ∈  ℝ )  →  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 113 | 13 111 112 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 114 | 109 113 | readdcld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ∈  ℝ ) | 
						
							| 115 | 106 114 | remulcld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  ∈  ℝ ) | 
						
							| 116 |  | nnrp | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℝ+ ) | 
						
							| 117 | 116 109 | sylan2 | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( ( log ‘ 𝑥 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 118 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 119 | 118 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 120 | 106 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℂ ) | 
						
							| 121 |  | 1red | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  1  ∈  ℝ ) | 
						
							| 122 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 123 | 122 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℂ ) | 
						
							| 124 |  | 1red | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ )  →  1  ∈  ℝ ) | 
						
							| 125 | 119 | dvmptid | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  𝑥 ) )  =  ( 𝑥  ∈  ℝ  ↦  1 ) ) | 
						
							| 126 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 127 | 126 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ℝ+  ⊆  ℝ ) | 
						
							| 128 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 129 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 130 |  | iooretop | ⊢ ( 0 (,) +∞ )  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 131 | 93 130 | eqeltrri | ⊢ ℝ+  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 132 | 131 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ℝ+  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 133 | 119 123 124 125 127 128 129 132 | dvmptres | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  𝑥 ) )  =  ( 𝑥  ∈  ℝ+  ↦  1 ) ) | 
						
							| 134 | 114 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ∈  ℂ ) | 
						
							| 135 |  | resubcl | ⊢ ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  ∈  ℝ ) | 
						
							| 136 | 111 13 135 | sylancl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  ∈  ℝ ) | 
						
							| 137 | 136 107 | rerpdivcld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 138 | 109 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( log ‘ 𝑥 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 139 | 111 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 2  ·  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 140 | 107 | rpreccld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 141 | 140 | rpcnd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  𝑥 )  ∈  ℂ ) | 
						
							| 142 | 139 141 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  ∈  ℂ ) | 
						
							| 143 |  | cnelprrecn | ⊢ ℂ  ∈  { ℝ ,  ℂ } | 
						
							| 144 | 143 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ℂ  ∈  { ℝ ,  ℂ } ) | 
						
							| 145 | 108 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 146 |  | sqcl | ⊢ ( 𝑦  ∈  ℂ  →  ( 𝑦 ↑ 2 )  ∈  ℂ ) | 
						
							| 147 | 146 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℂ )  →  ( 𝑦 ↑ 2 )  ∈  ℂ ) | 
						
							| 148 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℂ )  →  𝑦  ∈  ℂ ) | 
						
							| 149 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 2  ·  𝑦 )  ∈  ℂ ) | 
						
							| 150 | 25 148 149 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑦  ∈  ℂ )  →  ( 2  ·  𝑦 )  ∈  ℂ ) | 
						
							| 151 |  | relogf1o | ⊢ ( log  ↾  ℝ+ ) : ℝ+ –1-1-onto→ ℝ | 
						
							| 152 |  | f1of | ⊢ ( ( log  ↾  ℝ+ ) : ℝ+ –1-1-onto→ ℝ  →  ( log  ↾  ℝ+ ) : ℝ+ ⟶ ℝ ) | 
						
							| 153 | 151 152 | mp1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( log  ↾  ℝ+ ) : ℝ+ ⟶ ℝ ) | 
						
							| 154 | 153 | feqmptd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( log  ↾  ℝ+ )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( log  ↾  ℝ+ ) ‘ 𝑥 ) ) ) | 
						
							| 155 |  | fvres | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( log  ↾  ℝ+ ) ‘ 𝑥 )  =  ( log ‘ 𝑥 ) ) | 
						
							| 156 | 155 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( log  ↾  ℝ+ ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) ) | 
						
							| 157 | 154 156 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( log  ↾  ℝ+ )  =  ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) ) ) | 
						
							| 158 | 157 | oveq2d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( log  ↾  ℝ+ ) )  =  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 159 |  | dvrelog | ⊢ ( ℝ  D  ( log  ↾  ℝ+ ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) ) | 
						
							| 160 | 158 159 | eqtr3di | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  ( log ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( 1  /  𝑥 ) ) ) | 
						
							| 161 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 162 |  | dvexp | ⊢ ( 2  ∈  ℕ  →  ( ℂ  D  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 2 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( 2  ·  ( 𝑦 ↑ ( 2  −  1 ) ) ) ) ) | 
						
							| 163 | 161 162 | mp1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℂ  D  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 2 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( 2  ·  ( 𝑦 ↑ ( 2  −  1 ) ) ) ) ) | 
						
							| 164 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 165 | 164 | oveq2i | ⊢ ( 𝑦 ↑ ( 2  −  1 ) )  =  ( 𝑦 ↑ 1 ) | 
						
							| 166 |  | exp1 | ⊢ ( 𝑦  ∈  ℂ  →  ( 𝑦 ↑ 1 )  =  𝑦 ) | 
						
							| 167 | 165 166 | eqtrid | ⊢ ( 𝑦  ∈  ℂ  →  ( 𝑦 ↑ ( 2  −  1 ) )  =  𝑦 ) | 
						
							| 168 | 167 | oveq2d | ⊢ ( 𝑦  ∈  ℂ  →  ( 2  ·  ( 𝑦 ↑ ( 2  −  1 ) ) )  =  ( 2  ·  𝑦 ) ) | 
						
							| 169 | 168 | mpteq2ia | ⊢ ( 𝑦  ∈  ℂ  ↦  ( 2  ·  ( 𝑦 ↑ ( 2  −  1 ) ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( 2  ·  𝑦 ) ) | 
						
							| 170 | 163 169 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℂ  D  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ 2 ) ) )  =  ( 𝑦  ∈  ℂ  ↦  ( 2  ·  𝑦 ) ) ) | 
						
							| 171 |  | oveq1 | ⊢ ( 𝑦  =  ( log ‘ 𝑥 )  →  ( 𝑦 ↑ 2 )  =  ( ( log ‘ 𝑥 ) ↑ 2 ) ) | 
						
							| 172 |  | oveq2 | ⊢ ( 𝑦  =  ( log ‘ 𝑥 )  →  ( 2  ·  𝑦 )  =  ( 2  ·  ( log ‘ 𝑥 ) ) ) | 
						
							| 173 | 119 144 145 140 147 150 160 170 171 172 | dvmptco | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ 𝑥 ) ↑ 2 ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) ) ) ) | 
						
							| 174 | 113 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 175 |  | ovexd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 0  −  ( 2  ·  ( 1  /  𝑥 ) ) )  ∈  V ) | 
						
							| 176 |  | 2cnd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  2  ∈  ℂ ) | 
						
							| 177 |  | 0red | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  0  ∈  ℝ ) | 
						
							| 178 |  | 2cnd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ )  →  2  ∈  ℂ ) | 
						
							| 179 |  | 0red | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ )  →  0  ∈  ℝ ) | 
						
							| 180 |  | 2cnd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  2  ∈  ℂ ) | 
						
							| 181 | 119 180 | dvmptc | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ  ↦  2 ) )  =  ( 𝑥  ∈  ℝ  ↦  0 ) ) | 
						
							| 182 | 119 178 179 181 127 128 129 132 | dvmptres | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  2 ) )  =  ( 𝑥  ∈  ℝ+  ↦  0 ) ) | 
						
							| 183 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( 1  /  𝑥 )  ∈  ℂ )  →  ( 2  ·  ( 1  /  𝑥 ) )  ∈  ℂ ) | 
						
							| 184 | 25 141 183 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 2  ·  ( 1  /  𝑥 ) )  ∈  ℂ ) | 
						
							| 185 | 119 145 140 160 180 | dvmptcmul | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( 2  ·  ( 1  /  𝑥 ) ) ) ) | 
						
							| 186 | 119 176 177 182 139 184 185 | dvmptsub | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( 0  −  ( 2  ·  ( 1  /  𝑥 ) ) ) ) ) | 
						
							| 187 | 119 138 142 173 174 175 186 | dvmptadd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  +  ( 0  −  ( 2  ·  ( 1  /  𝑥 ) ) ) ) ) ) | 
						
							| 188 | 139 176 141 | subdird | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  ·  ( 1  /  𝑥 ) )  =  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  −  ( 2  ·  ( 1  /  𝑥 ) ) ) ) | 
						
							| 189 | 136 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  ∈  ℂ ) | 
						
							| 190 |  | rpne0 | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ≠  0 ) | 
						
							| 191 | 190 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ≠  0 ) | 
						
							| 192 | 189 120 191 | divrecd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  /  𝑥 )  =  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  ·  ( 1  /  𝑥 ) ) ) | 
						
							| 193 |  | df-neg | ⊢ - ( 2  ·  ( 1  /  𝑥 ) )  =  ( 0  −  ( 2  ·  ( 1  /  𝑥 ) ) ) | 
						
							| 194 | 193 | oveq2i | ⊢ ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  +  - ( 2  ·  ( 1  /  𝑥 ) ) )  =  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  +  ( 0  −  ( 2  ·  ( 1  /  𝑥 ) ) ) ) | 
						
							| 195 | 142 184 | negsubd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  +  - ( 2  ·  ( 1  /  𝑥 ) ) )  =  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  −  ( 2  ·  ( 1  /  𝑥 ) ) ) ) | 
						
							| 196 | 194 195 | eqtr3id | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  +  ( 0  −  ( 2  ·  ( 1  /  𝑥 ) ) ) )  =  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  −  ( 2  ·  ( 1  /  𝑥 ) ) ) ) | 
						
							| 197 | 188 192 196 | 3eqtr4rd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  +  ( 0  −  ( 2  ·  ( 1  /  𝑥 ) ) ) )  =  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  /  𝑥 ) ) | 
						
							| 198 | 197 | mpteq2dva | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( 𝑥  ∈  ℝ+  ↦  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  ·  ( 1  /  𝑥 ) )  +  ( 0  −  ( 2  ·  ( 1  /  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  /  𝑥 ) ) ) | 
						
							| 199 | 187 198 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  /  𝑥 ) ) ) | 
						
							| 200 | 119 120 121 133 134 137 199 | dvmptmul | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( 1  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  +  ( ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  /  𝑥 )  ·  𝑥 ) ) ) ) | 
						
							| 201 | 134 | mullidd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 1  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  =  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 202 | 138 139 176 | subsub2d | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( log ‘ 𝑥 ) ↑ 2 )  −  ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 ) )  =  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 203 | 201 202 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( 1  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  =  ( ( ( log ‘ 𝑥 ) ↑ 2 )  −  ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 ) ) ) | 
						
							| 204 | 189 120 191 | divcan1d | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  /  𝑥 )  ·  𝑥 )  =  ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 ) ) | 
						
							| 205 | 203 204 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 1  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  +  ( ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  /  𝑥 )  ·  𝑥 ) )  =  ( ( ( ( log ‘ 𝑥 ) ↑ 2 )  −  ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 ) )  +  ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 ) ) ) | 
						
							| 206 | 138 189 | npcand | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( ( log ‘ 𝑥 ) ↑ 2 )  −  ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 ) )  +  ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 ) )  =  ( ( log ‘ 𝑥 ) ↑ 2 ) ) | 
						
							| 207 | 205 206 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 1  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  +  ( ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  /  𝑥 )  ·  𝑥 ) )  =  ( ( log ‘ 𝑥 ) ↑ 2 ) ) | 
						
							| 208 | 207 | mpteq2dva | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( 𝑥  ∈  ℝ+  ↦  ( ( 1  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) )  +  ( ( ( ( 2  ·  ( log ‘ 𝑥 ) )  −  2 )  /  𝑥 )  ·  𝑥 ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ 𝑥 ) ↑ 2 ) ) ) | 
						
							| 209 | 200 208 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ℝ  D  ( 𝑥  ∈  ℝ+  ↦  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ 𝑥 ) ↑ 2 ) ) ) | 
						
							| 210 |  | fveq2 | ⊢ ( 𝑥  =  𝑛  →  ( log ‘ 𝑥 )  =  ( log ‘ 𝑛 ) ) | 
						
							| 211 | 210 | oveq1d | ⊢ ( 𝑥  =  𝑛  →  ( ( log ‘ 𝑥 ) ↑ 2 )  =  ( ( log ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 212 |  | simp32 | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  𝑥  ≤  𝑛 ) | 
						
							| 213 |  | simp2l | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 214 |  | simp2r | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 215 | 213 214 | logled | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  ( 𝑥  ≤  𝑛  ↔  ( log ‘ 𝑥 )  ≤  ( log ‘ 𝑛 ) ) ) | 
						
							| 216 | 212 215 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  ( log ‘ 𝑥 )  ≤  ( log ‘ 𝑛 ) ) | 
						
							| 217 | 213 | relogcld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 218 | 214 | relogcld | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 219 |  | simp31 | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 220 |  | logleb | ⊢ ( ( 1  ∈  ℝ+  ∧  𝑥  ∈  ℝ+ )  →  ( 1  ≤  𝑥  ↔  ( log ‘ 1 )  ≤  ( log ‘ 𝑥 ) ) ) | 
						
							| 221 | 54 213 220 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  ( 1  ≤  𝑥  ↔  ( log ‘ 1 )  ≤  ( log ‘ 𝑥 ) ) ) | 
						
							| 222 | 219 221 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  ( log ‘ 1 )  ≤  ( log ‘ 𝑥 ) ) | 
						
							| 223 | 64 222 | eqbrtrrid | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  0  ≤  ( log ‘ 𝑥 ) ) | 
						
							| 224 | 214 | rpred | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  𝑛  ∈  ℝ ) | 
						
							| 225 |  | 1red | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  1  ∈  ℝ ) | 
						
							| 226 | 213 | rpred | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 227 | 225 226 224 219 212 | letrd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  1  ≤  𝑛 ) | 
						
							| 228 | 224 227 | logge0d | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  0  ≤  ( log ‘ 𝑛 ) ) | 
						
							| 229 | 217 218 223 228 | le2sqd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  ( ( log ‘ 𝑥 )  ≤  ( log ‘ 𝑛 )  ↔  ( ( log ‘ 𝑥 ) ↑ 2 )  ≤  ( ( log ‘ 𝑛 ) ↑ 2 ) ) ) | 
						
							| 230 | 216 229 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  ∧  ( 1  ≤  𝑥  ∧  𝑥  ≤  𝑛  ∧  𝑛  ≤  +∞ ) )  →  ( ( log ‘ 𝑥 ) ↑ 2 )  ≤  ( ( log ‘ 𝑛 ) ↑ 2 ) ) | 
						
							| 231 |  | relogcl | ⊢ ( 𝑥  ∈  ℝ+  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 232 | 231 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 233 | 232 | sqge0d | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  0  ≤  ( ( log ‘ 𝑥 ) ↑ 2 ) ) | 
						
							| 234 | 54 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  1  ∈  ℝ+ ) | 
						
							| 235 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 236 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 237 | 236 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  1  ≤  1 ) | 
						
							| 238 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  1  ≤  𝐴 ) | 
						
							| 239 | 9 | rexrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  𝐴  ∈  ℝ* ) | 
						
							| 240 |  | pnfge | ⊢ ( 𝐴  ∈  ℝ*  →  𝐴  ≤  +∞ ) | 
						
							| 241 | 239 240 | syl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  𝐴  ≤  +∞ ) | 
						
							| 242 | 94 95 96 97 99 103 104 115 109 117 209 211 230 50 233 234 235 237 238 241 44 | dvfsum2 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( abs ‘ ( ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 𝐴 )  −  ( ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝑥  ·  ( ( ( log ‘ 𝑥 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 1 ) ) )  ≤  ( ( log ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 243 | 92 242 | eqbrtrrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( abs ‘ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) )  −  - 2 ) )  ≤  ( ( log ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 244 | 24 29 12 38 243 | letrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  −  2 )  ≤  ( ( log ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 245 | 13 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  2  ∈  ℝ ) | 
						
							| 246 | 22 245 12 | lesubaddd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( ( ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  −  2 )  ≤  ( ( log ‘ 𝐴 ) ↑ 2 )  ↔  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  ≤  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  2 ) ) ) | 
						
							| 247 | 244 246 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  1  ≤  𝐴 )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 )  −  ( 𝐴  ·  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ 𝐴 ) ) ) ) ) ) )  ≤  ( ( ( log ‘ 𝐴 ) ↑ 2 )  +  2 ) ) |