| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsum2.s |
|- S = ( T (,) +oo ) |
| 2 |
|
dvfsum2.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
dvfsum2.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
dvfsum2.d |
|- ( ph -> D e. RR ) |
| 5 |
|
dvfsum2.u |
|- ( ph -> U e. RR* ) |
| 6 |
|
dvfsum2.md |
|- ( ph -> M <_ ( D + 1 ) ) |
| 7 |
|
dvfsum2.t |
|- ( ph -> T e. RR ) |
| 8 |
|
dvfsum2.a |
|- ( ( ph /\ x e. S ) -> A e. RR ) |
| 9 |
|
dvfsum2.b1 |
|- ( ( ph /\ x e. S ) -> B e. V ) |
| 10 |
|
dvfsum2.b2 |
|- ( ( ph /\ x e. Z ) -> B e. RR ) |
| 11 |
|
dvfsum2.b3 |
|- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
| 12 |
|
dvfsum2.c |
|- ( x = k -> B = C ) |
| 13 |
|
dvfsum2.l |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> B <_ C ) |
| 14 |
|
dvfsum2.g |
|- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
| 15 |
|
dvfsum2.0 |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> 0 <_ B ) |
| 16 |
|
dvfsum2.1 |
|- ( ph -> X e. S ) |
| 17 |
|
dvfsum2.2 |
|- ( ph -> Y e. S ) |
| 18 |
|
dvfsum2.3 |
|- ( ph -> D <_ X ) |
| 19 |
|
dvfsum2.4 |
|- ( ph -> X <_ Y ) |
| 20 |
|
dvfsum2.5 |
|- ( ph -> Y <_ U ) |
| 21 |
|
dvfsum2.e |
|- ( x = Y -> B = E ) |
| 22 |
|
fzfid |
|- ( ph -> ( M ... ( |_ ` Y ) ) e. Fin ) |
| 23 |
10
|
ralrimiva |
|- ( ph -> A. x e. Z B e. RR ) |
| 24 |
|
elfzuz |
|- ( k e. ( M ... ( |_ ` Y ) ) -> k e. ( ZZ>= ` M ) ) |
| 25 |
24 2
|
eleqtrrdi |
|- ( k e. ( M ... ( |_ ` Y ) ) -> k e. Z ) |
| 26 |
12
|
eleq1d |
|- ( x = k -> ( B e. RR <-> C e. RR ) ) |
| 27 |
26
|
rspccva |
|- ( ( A. x e. Z B e. RR /\ k e. Z ) -> C e. RR ) |
| 28 |
23 25 27
|
syl2an |
|- ( ( ph /\ k e. ( M ... ( |_ ` Y ) ) ) -> C e. RR ) |
| 29 |
22 28
|
fsumrecl |
|- ( ph -> sum_ k e. ( M ... ( |_ ` Y ) ) C e. RR ) |
| 30 |
8
|
ralrimiva |
|- ( ph -> A. x e. S A e. RR ) |
| 31 |
|
nfcsb1v |
|- F/_ x [_ Y / x ]_ A |
| 32 |
31
|
nfel1 |
|- F/ x [_ Y / x ]_ A e. RR |
| 33 |
|
csbeq1a |
|- ( x = Y -> A = [_ Y / x ]_ A ) |
| 34 |
33
|
eleq1d |
|- ( x = Y -> ( A e. RR <-> [_ Y / x ]_ A e. RR ) ) |
| 35 |
32 34
|
rspc |
|- ( Y e. S -> ( A. x e. S A e. RR -> [_ Y / x ]_ A e. RR ) ) |
| 36 |
17 30 35
|
sylc |
|- ( ph -> [_ Y / x ]_ A e. RR ) |
| 37 |
29 36
|
resubcld |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) e. RR ) |
| 38 |
|
nfcv |
|- F/_ x Y |
| 39 |
|
nfcv |
|- F/_ x sum_ k e. ( M ... ( |_ ` Y ) ) C |
| 40 |
|
nfcv |
|- F/_ x - |
| 41 |
39 40 31
|
nfov |
|- F/_ x ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) |
| 42 |
|
fveq2 |
|- ( x = Y -> ( |_ ` x ) = ( |_ ` Y ) ) |
| 43 |
42
|
oveq2d |
|- ( x = Y -> ( M ... ( |_ ` x ) ) = ( M ... ( |_ ` Y ) ) ) |
| 44 |
43
|
sumeq1d |
|- ( x = Y -> sum_ k e. ( M ... ( |_ ` x ) ) C = sum_ k e. ( M ... ( |_ ` Y ) ) C ) |
| 45 |
44 33
|
oveq12d |
|- ( x = Y -> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 46 |
38 41 45 14
|
fvmptf |
|- ( ( Y e. S /\ ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) e. RR ) -> ( G ` Y ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 47 |
17 37 46
|
syl2anc |
|- ( ph -> ( G ` Y ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 48 |
|
fzfid |
|- ( ph -> ( M ... ( |_ ` X ) ) e. Fin ) |
| 49 |
|
elfzuz |
|- ( k e. ( M ... ( |_ ` X ) ) -> k e. ( ZZ>= ` M ) ) |
| 50 |
49 2
|
eleqtrrdi |
|- ( k e. ( M ... ( |_ ` X ) ) -> k e. Z ) |
| 51 |
23 50 27
|
syl2an |
|- ( ( ph /\ k e. ( M ... ( |_ ` X ) ) ) -> C e. RR ) |
| 52 |
48 51
|
fsumrecl |
|- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) C e. RR ) |
| 53 |
|
nfcsb1v |
|- F/_ x [_ X / x ]_ A |
| 54 |
53
|
nfel1 |
|- F/ x [_ X / x ]_ A e. RR |
| 55 |
|
csbeq1a |
|- ( x = X -> A = [_ X / x ]_ A ) |
| 56 |
55
|
eleq1d |
|- ( x = X -> ( A e. RR <-> [_ X / x ]_ A e. RR ) ) |
| 57 |
54 56
|
rspc |
|- ( X e. S -> ( A. x e. S A e. RR -> [_ X / x ]_ A e. RR ) ) |
| 58 |
16 30 57
|
sylc |
|- ( ph -> [_ X / x ]_ A e. RR ) |
| 59 |
52 58
|
resubcld |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) e. RR ) |
| 60 |
|
nfcv |
|- F/_ x X |
| 61 |
|
nfcv |
|- F/_ x sum_ k e. ( M ... ( |_ ` X ) ) C |
| 62 |
61 40 53
|
nfov |
|- F/_ x ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) |
| 63 |
|
fveq2 |
|- ( x = X -> ( |_ ` x ) = ( |_ ` X ) ) |
| 64 |
63
|
oveq2d |
|- ( x = X -> ( M ... ( |_ ` x ) ) = ( M ... ( |_ ` X ) ) ) |
| 65 |
64
|
sumeq1d |
|- ( x = X -> sum_ k e. ( M ... ( |_ ` x ) ) C = sum_ k e. ( M ... ( |_ ` X ) ) C ) |
| 66 |
65 55
|
oveq12d |
|- ( x = X -> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 67 |
60 62 66 14
|
fvmptf |
|- ( ( X e. S /\ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) e. RR ) -> ( G ` X ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 68 |
16 59 67
|
syl2anc |
|- ( ph -> ( G ` X ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 69 |
47 68
|
oveq12d |
|- ( ph -> ( ( G ` Y ) - ( G ` X ) ) = ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 70 |
69
|
fveq2d |
|- ( ph -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) = ( abs ` ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 71 |
37
|
recnd |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) e. CC ) |
| 72 |
59
|
recnd |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) e. CC ) |
| 73 |
71 72
|
abssubd |
|- ( ph -> ( abs ` ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) = ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 74 |
70 73
|
eqtrd |
|- ( ph -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) = ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 75 |
|
ioossre |
|- ( T (,) +oo ) C_ RR |
| 76 |
1 75
|
eqsstri |
|- S C_ RR |
| 77 |
76
|
a1i |
|- ( ph -> S C_ RR ) |
| 78 |
77 8 9 11
|
dvmptrecl |
|- ( ( ph /\ x e. S ) -> B e. RR ) |
| 79 |
78
|
ralrimiva |
|- ( ph -> A. x e. S B e. RR ) |
| 80 |
21
|
eleq1d |
|- ( x = Y -> ( B e. RR <-> E e. RR ) ) |
| 81 |
80
|
rspcv |
|- ( Y e. S -> ( A. x e. S B e. RR -> E e. RR ) ) |
| 82 |
17 79 81
|
sylc |
|- ( ph -> E e. RR ) |
| 83 |
37 82
|
resubcld |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) e. RR ) |
| 84 |
76 16
|
sselid |
|- ( ph -> X e. RR ) |
| 85 |
|
reflcl |
|- ( X e. RR -> ( |_ ` X ) e. RR ) |
| 86 |
84 85
|
syl |
|- ( ph -> ( |_ ` X ) e. RR ) |
| 87 |
84 86
|
resubcld |
|- ( ph -> ( X - ( |_ ` X ) ) e. RR ) |
| 88 |
|
nfv |
|- F/ m B e. RR |
| 89 |
|
nfcsb1v |
|- F/_ x [_ m / x ]_ B |
| 90 |
89
|
nfel1 |
|- F/ x [_ m / x ]_ B e. RR |
| 91 |
|
csbeq1a |
|- ( x = m -> B = [_ m / x ]_ B ) |
| 92 |
91
|
eleq1d |
|- ( x = m -> ( B e. RR <-> [_ m / x ]_ B e. RR ) ) |
| 93 |
88 90 92
|
cbvralw |
|- ( A. x e. S B e. RR <-> A. m e. S [_ m / x ]_ B e. RR ) |
| 94 |
79 93
|
sylib |
|- ( ph -> A. m e. S [_ m / x ]_ B e. RR ) |
| 95 |
|
csbeq1 |
|- ( m = X -> [_ m / x ]_ B = [_ X / x ]_ B ) |
| 96 |
95
|
eleq1d |
|- ( m = X -> ( [_ m / x ]_ B e. RR <-> [_ X / x ]_ B e. RR ) ) |
| 97 |
96
|
rspcv |
|- ( X e. S -> ( A. m e. S [_ m / x ]_ B e. RR -> [_ X / x ]_ B e. RR ) ) |
| 98 |
16 94 97
|
sylc |
|- ( ph -> [_ X / x ]_ B e. RR ) |
| 99 |
87 98
|
remulcld |
|- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) e. RR ) |
| 100 |
99 59
|
readdcld |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) e. RR ) |
| 101 |
100 98
|
resubcld |
|- ( ph -> ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) e. RR ) |
| 102 |
76 17
|
sselid |
|- ( ph -> Y e. RR ) |
| 103 |
|
reflcl |
|- ( Y e. RR -> ( |_ ` Y ) e. RR ) |
| 104 |
102 103
|
syl |
|- ( ph -> ( |_ ` Y ) e. RR ) |
| 105 |
102 104
|
resubcld |
|- ( ph -> ( Y - ( |_ ` Y ) ) e. RR ) |
| 106 |
105 82
|
remulcld |
|- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) e. RR ) |
| 107 |
106 37
|
readdcld |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. RR ) |
| 108 |
107 82
|
resubcld |
|- ( ph -> ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) e. RR ) |
| 109 |
|
fracge0 |
|- ( Y e. RR -> 0 <_ ( Y - ( |_ ` Y ) ) ) |
| 110 |
102 109
|
syl |
|- ( ph -> 0 <_ ( Y - ( |_ ` Y ) ) ) |
| 111 |
15
|
expr |
|- ( ( ph /\ x e. S ) -> ( D <_ x -> 0 <_ B ) ) |
| 112 |
111
|
ralrimiva |
|- ( ph -> A. x e. S ( D <_ x -> 0 <_ B ) ) |
| 113 |
4 84 102 18 19
|
letrd |
|- ( ph -> D <_ Y ) |
| 114 |
|
breq2 |
|- ( x = Y -> ( D <_ x <-> D <_ Y ) ) |
| 115 |
21
|
breq2d |
|- ( x = Y -> ( 0 <_ B <-> 0 <_ E ) ) |
| 116 |
114 115
|
imbi12d |
|- ( x = Y -> ( ( D <_ x -> 0 <_ B ) <-> ( D <_ Y -> 0 <_ E ) ) ) |
| 117 |
116
|
rspcv |
|- ( Y e. S -> ( A. x e. S ( D <_ x -> 0 <_ B ) -> ( D <_ Y -> 0 <_ E ) ) ) |
| 118 |
17 112 113 117
|
syl3c |
|- ( ph -> 0 <_ E ) |
| 119 |
105 82 110 118
|
mulge0d |
|- ( ph -> 0 <_ ( ( Y - ( |_ ` Y ) ) x. E ) ) |
| 120 |
37 106
|
addge02d |
|- ( ph -> ( 0 <_ ( ( Y - ( |_ ` Y ) ) x. E ) <-> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 121 |
119 120
|
mpbid |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 122 |
37 107 82 121
|
lesub1dd |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) ) |
| 123 |
8
|
renegcld |
|- ( ( ph /\ x e. S ) -> -u A e. RR ) |
| 124 |
78
|
renegcld |
|- ( ( ph /\ x e. S ) -> -u B e. RR ) |
| 125 |
10
|
renegcld |
|- ( ( ph /\ x e. Z ) -> -u B e. RR ) |
| 126 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 127 |
126
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 128 |
8
|
recnd |
|- ( ( ph /\ x e. S ) -> A e. CC ) |
| 129 |
127 128 9 11
|
dvmptneg |
|- ( ph -> ( RR _D ( x e. S |-> -u A ) ) = ( x e. S |-> -u B ) ) |
| 130 |
12
|
negeqd |
|- ( x = k -> -u B = -u C ) |
| 131 |
78
|
adantrr |
|- ( ( ph /\ ( x e. S /\ k e. S ) ) -> B e. RR ) |
| 132 |
131
|
3adant3 |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> B e. RR ) |
| 133 |
|
simp2r |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> k e. S ) |
| 134 |
79
|
3ad2ant1 |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> A. x e. S B e. RR ) |
| 135 |
26
|
rspcv |
|- ( k e. S -> ( A. x e. S B e. RR -> C e. RR ) ) |
| 136 |
133 134 135
|
sylc |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> C e. RR ) |
| 137 |
132 136
|
lenegd |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> ( B <_ C <-> -u C <_ -u B ) ) |
| 138 |
13 137
|
mpbid |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> -u C <_ -u B ) |
| 139 |
|
eqid |
|- ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) = ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) |
| 140 |
1 2 3 4 6 7 123 124 125 129 130 5 138 139 16 17 18 19 20
|
dvfsumlem3 |
|- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) <_ ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) /\ ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) - [_ X / x ]_ -u B ) <_ ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) - [_ Y / x ]_ -u B ) ) ) |
| 141 |
140
|
simprd |
|- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) - [_ X / x ]_ -u B ) <_ ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) - [_ Y / x ]_ -u B ) ) |
| 142 |
87
|
recnd |
|- ( ph -> ( X - ( |_ ` X ) ) e. CC ) |
| 143 |
98
|
recnd |
|- ( ph -> [_ X / x ]_ B e. CC ) |
| 144 |
142 143
|
mulneg2d |
|- ( ph -> ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) = -u ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) ) |
| 145 |
52
|
recnd |
|- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) C e. CC ) |
| 146 |
58
|
recnd |
|- ( ph -> [_ X / x ]_ A e. CC ) |
| 147 |
145 146
|
neg2subd |
|- ( ph -> ( -u sum_ k e. ( M ... ( |_ ` X ) ) C - -u [_ X / x ]_ A ) = ( [_ X / x ]_ A - sum_ k e. ( M ... ( |_ ` X ) ) C ) ) |
| 148 |
51
|
recnd |
|- ( ( ph /\ k e. ( M ... ( |_ ` X ) ) ) -> C e. CC ) |
| 149 |
48 148
|
fsumneg |
|- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) -u C = -u sum_ k e. ( M ... ( |_ ` X ) ) C ) |
| 150 |
149
|
oveq1d |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) = ( -u sum_ k e. ( M ... ( |_ ` X ) ) C - -u [_ X / x ]_ A ) ) |
| 151 |
145 146
|
negsubdi2d |
|- ( ph -> -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) = ( [_ X / x ]_ A - sum_ k e. ( M ... ( |_ ` X ) ) C ) ) |
| 152 |
147 150 151
|
3eqtr4d |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) = -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 153 |
144 152
|
oveq12d |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) = ( -u ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 154 |
99
|
recnd |
|- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) e. CC ) |
| 155 |
154 72
|
negdid |
|- ( ph -> -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) = ( -u ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 156 |
153 155
|
eqtr4d |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) = -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 157 |
100
|
renegcld |
|- ( ph -> -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) e. RR ) |
| 158 |
156 157
|
eqeltrd |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) e. RR ) |
| 159 |
|
nfcv |
|- F/_ x ( X - ( |_ ` X ) ) |
| 160 |
|
nfcv |
|- F/_ x x. |
| 161 |
|
nfcsb1v |
|- F/_ x [_ X / x ]_ B |
| 162 |
161
|
nfneg |
|- F/_ x -u [_ X / x ]_ B |
| 163 |
159 160 162
|
nfov |
|- F/_ x ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) |
| 164 |
|
nfcv |
|- F/_ x + |
| 165 |
|
nfcv |
|- F/_ x sum_ k e. ( M ... ( |_ ` X ) ) -u C |
| 166 |
53
|
nfneg |
|- F/_ x -u [_ X / x ]_ A |
| 167 |
165 40 166
|
nfov |
|- F/_ x ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) |
| 168 |
163 164 167
|
nfov |
|- F/_ x ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) |
| 169 |
|
id |
|- ( x = X -> x = X ) |
| 170 |
169 63
|
oveq12d |
|- ( x = X -> ( x - ( |_ ` x ) ) = ( X - ( |_ ` X ) ) ) |
| 171 |
|
csbeq1a |
|- ( x = X -> B = [_ X / x ]_ B ) |
| 172 |
171
|
negeqd |
|- ( x = X -> -u B = -u [_ X / x ]_ B ) |
| 173 |
170 172
|
oveq12d |
|- ( x = X -> ( ( x - ( |_ ` x ) ) x. -u B ) = ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) ) |
| 174 |
64
|
sumeq1d |
|- ( x = X -> sum_ k e. ( M ... ( |_ ` x ) ) -u C = sum_ k e. ( M ... ( |_ ` X ) ) -u C ) |
| 175 |
55
|
negeqd |
|- ( x = X -> -u A = -u [_ X / x ]_ A ) |
| 176 |
174 175
|
oveq12d |
|- ( x = X -> ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) = ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) |
| 177 |
173 176
|
oveq12d |
|- ( x = X -> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) = ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) ) |
| 178 |
60 168 177 139
|
fvmptf |
|- ( ( X e. S /\ ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) e. RR ) -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) = ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) ) |
| 179 |
16 158 178
|
syl2anc |
|- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) = ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) ) |
| 180 |
179 156
|
eqtrd |
|- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) = -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 181 |
|
csbnegg |
|- ( X e. S -> [_ X / x ]_ -u B = -u [_ X / x ]_ B ) |
| 182 |
16 181
|
syl |
|- ( ph -> [_ X / x ]_ -u B = -u [_ X / x ]_ B ) |
| 183 |
180 182
|
oveq12d |
|- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) - [_ X / x ]_ -u B ) = ( -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - -u [_ X / x ]_ B ) ) |
| 184 |
105
|
recnd |
|- ( ph -> ( Y - ( |_ ` Y ) ) e. CC ) |
| 185 |
82
|
recnd |
|- ( ph -> E e. CC ) |
| 186 |
184 185
|
mulneg2d |
|- ( ph -> ( ( Y - ( |_ ` Y ) ) x. -u E ) = -u ( ( Y - ( |_ ` Y ) ) x. E ) ) |
| 187 |
29
|
recnd |
|- ( ph -> sum_ k e. ( M ... ( |_ ` Y ) ) C e. CC ) |
| 188 |
36
|
recnd |
|- ( ph -> [_ Y / x ]_ A e. CC ) |
| 189 |
187 188
|
neg2subd |
|- ( ph -> ( -u sum_ k e. ( M ... ( |_ ` Y ) ) C - -u [_ Y / x ]_ A ) = ( [_ Y / x ]_ A - sum_ k e. ( M ... ( |_ ` Y ) ) C ) ) |
| 190 |
28
|
recnd |
|- ( ( ph /\ k e. ( M ... ( |_ ` Y ) ) ) -> C e. CC ) |
| 191 |
22 190
|
fsumneg |
|- ( ph -> sum_ k e. ( M ... ( |_ ` Y ) ) -u C = -u sum_ k e. ( M ... ( |_ ` Y ) ) C ) |
| 192 |
191
|
oveq1d |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) = ( -u sum_ k e. ( M ... ( |_ ` Y ) ) C - -u [_ Y / x ]_ A ) ) |
| 193 |
187 188
|
negsubdi2d |
|- ( ph -> -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) = ( [_ Y / x ]_ A - sum_ k e. ( M ... ( |_ ` Y ) ) C ) ) |
| 194 |
189 192 193
|
3eqtr4d |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) = -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 195 |
186 194
|
oveq12d |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) = ( -u ( ( Y - ( |_ ` Y ) ) x. E ) + -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 196 |
106
|
recnd |
|- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) e. CC ) |
| 197 |
196 71
|
negdid |
|- ( ph -> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( -u ( ( Y - ( |_ ` Y ) ) x. E ) + -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 198 |
195 197
|
eqtr4d |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) = -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 199 |
107
|
renegcld |
|- ( ph -> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. RR ) |
| 200 |
198 199
|
eqeltrd |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) e. RR ) |
| 201 |
|
nfcv |
|- F/_ x ( ( Y - ( |_ ` Y ) ) x. -u E ) |
| 202 |
|
nfcv |
|- F/_ x sum_ k e. ( M ... ( |_ ` Y ) ) -u C |
| 203 |
31
|
nfneg |
|- F/_ x -u [_ Y / x ]_ A |
| 204 |
202 40 203
|
nfov |
|- F/_ x ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) |
| 205 |
201 164 204
|
nfov |
|- F/_ x ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) |
| 206 |
|
id |
|- ( x = Y -> x = Y ) |
| 207 |
206 42
|
oveq12d |
|- ( x = Y -> ( x - ( |_ ` x ) ) = ( Y - ( |_ ` Y ) ) ) |
| 208 |
21
|
negeqd |
|- ( x = Y -> -u B = -u E ) |
| 209 |
207 208
|
oveq12d |
|- ( x = Y -> ( ( x - ( |_ ` x ) ) x. -u B ) = ( ( Y - ( |_ ` Y ) ) x. -u E ) ) |
| 210 |
43
|
sumeq1d |
|- ( x = Y -> sum_ k e. ( M ... ( |_ ` x ) ) -u C = sum_ k e. ( M ... ( |_ ` Y ) ) -u C ) |
| 211 |
33
|
negeqd |
|- ( x = Y -> -u A = -u [_ Y / x ]_ A ) |
| 212 |
210 211
|
oveq12d |
|- ( x = Y -> ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) |
| 213 |
209 212
|
oveq12d |
|- ( x = Y -> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) = ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) ) |
| 214 |
38 205 213 139
|
fvmptf |
|- ( ( Y e. S /\ ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) e. RR ) -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) = ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) ) |
| 215 |
17 200 214
|
syl2anc |
|- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) = ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) ) |
| 216 |
215 198
|
eqtrd |
|- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) = -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 217 |
208
|
adantl |
|- ( ( ph /\ x = Y ) -> -u B = -u E ) |
| 218 |
17 217
|
csbied |
|- ( ph -> [_ Y / x ]_ -u B = -u E ) |
| 219 |
216 218
|
oveq12d |
|- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) - [_ Y / x ]_ -u B ) = ( -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - -u E ) ) |
| 220 |
141 183 219
|
3brtr3d |
|- ( ph -> ( -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - -u [_ X / x ]_ B ) <_ ( -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - -u E ) ) |
| 221 |
100
|
recnd |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) e. CC ) |
| 222 |
221 143
|
neg2subd |
|- ( ph -> ( -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - -u [_ X / x ]_ B ) = ( [_ X / x ]_ B - ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 223 |
107
|
recnd |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. CC ) |
| 224 |
223 185
|
neg2subd |
|- ( ph -> ( -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - -u E ) = ( E - ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 225 |
220 222 224
|
3brtr3d |
|- ( ph -> ( [_ X / x ]_ B - ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) <_ ( E - ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 226 |
221 143
|
negsubdi2d |
|- ( ph -> -u ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) = ( [_ X / x ]_ B - ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 227 |
223 185
|
negsubdi2d |
|- ( ph -> -u ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) = ( E - ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 228 |
225 226 227
|
3brtr4d |
|- ( ph -> -u ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ -u ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) ) |
| 229 |
108 101
|
lenegd |
|- ( ph -> ( ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) <_ ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <-> -u ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ -u ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) ) ) |
| 230 |
228 229
|
mpbird |
|- ( ph -> ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) <_ ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) ) |
| 231 |
83 108 101 122 230
|
letrd |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) ) |
| 232 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 233 |
|
nfv |
|- F/ x D <_ X |
| 234 |
|
nfcv |
|- F/_ x 0 |
| 235 |
|
nfcv |
|- F/_ x <_ |
| 236 |
234 235 161
|
nfbr |
|- F/ x 0 <_ [_ X / x ]_ B |
| 237 |
233 236
|
nfim |
|- F/ x ( D <_ X -> 0 <_ [_ X / x ]_ B ) |
| 238 |
|
breq2 |
|- ( x = X -> ( D <_ x <-> D <_ X ) ) |
| 239 |
171
|
breq2d |
|- ( x = X -> ( 0 <_ B <-> 0 <_ [_ X / x ]_ B ) ) |
| 240 |
238 239
|
imbi12d |
|- ( x = X -> ( ( D <_ x -> 0 <_ B ) <-> ( D <_ X -> 0 <_ [_ X / x ]_ B ) ) ) |
| 241 |
237 240
|
rspc |
|- ( X e. S -> ( A. x e. S ( D <_ x -> 0 <_ B ) -> ( D <_ X -> 0 <_ [_ X / x ]_ B ) ) ) |
| 242 |
16 112 18 241
|
syl3c |
|- ( ph -> 0 <_ [_ X / x ]_ B ) |
| 243 |
|
fracle1 |
|- ( X e. RR -> ( X - ( |_ ` X ) ) <_ 1 ) |
| 244 |
84 243
|
syl |
|- ( ph -> ( X - ( |_ ` X ) ) <_ 1 ) |
| 245 |
87 232 98 242 244
|
lemul1ad |
|- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) <_ ( 1 x. [_ X / x ]_ B ) ) |
| 246 |
143
|
mullidd |
|- ( ph -> ( 1 x. [_ X / x ]_ B ) = [_ X / x ]_ B ) |
| 247 |
245 246
|
breqtrd |
|- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) <_ [_ X / x ]_ B ) |
| 248 |
99 98 59 247
|
leadd1dd |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( [_ X / x ]_ B + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 249 |
100 98 59
|
lesubadd2d |
|- ( ph -> ( ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <-> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( [_ X / x ]_ B + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 250 |
248 249
|
mpbird |
|- ( ph -> ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 251 |
83 101 59 231 250
|
letrd |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 252 |
37 82
|
readdcld |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) e. RR ) |
| 253 |
|
fracge0 |
|- ( X e. RR -> 0 <_ ( X - ( |_ ` X ) ) ) |
| 254 |
84 253
|
syl |
|- ( ph -> 0 <_ ( X - ( |_ ` X ) ) ) |
| 255 |
87 98 254 242
|
mulge0d |
|- ( ph -> 0 <_ ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) ) |
| 256 |
59 99
|
addge02d |
|- ( ph -> ( 0 <_ ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) <-> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 257 |
255 256
|
mpbid |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 258 |
140
|
simpld |
|- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) <_ ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) ) |
| 259 |
258 216 180
|
3brtr3d |
|- ( ph -> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 260 |
100 107
|
lenegd |
|- ( ph -> ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <-> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 261 |
259 260
|
mpbird |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 262 |
|
fracle1 |
|- ( Y e. RR -> ( Y - ( |_ ` Y ) ) <_ 1 ) |
| 263 |
102 262
|
syl |
|- ( ph -> ( Y - ( |_ ` Y ) ) <_ 1 ) |
| 264 |
105 232 82 118 263
|
lemul1ad |
|- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) <_ ( 1 x. E ) ) |
| 265 |
185
|
mullidd |
|- ( ph -> ( 1 x. E ) = E ) |
| 266 |
264 265
|
breqtrd |
|- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) <_ E ) |
| 267 |
106 82 37 266
|
leadd1dd |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ ( E + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 268 |
185 71
|
addcomd |
|- ( ph -> ( E + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
| 269 |
267 268
|
breqtrd |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
| 270 |
100 107 252 261 269
|
letrd |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
| 271 |
59 100 252 257 270
|
letrd |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
| 272 |
59 37 82
|
absdifled |
|- ( ph -> ( ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) <_ E <-> ( ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) /\ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) ) ) |
| 273 |
251 271 272
|
mpbir2and |
|- ( ph -> ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) <_ E ) |
| 274 |
74 273
|
eqbrtrd |
|- ( ph -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) <_ E ) |