| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsfi |
⊢ ( 𝑘 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ∈ Fin ) |
| 2 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ⊆ ℕ |
| 3 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) |
| 4 |
2 3
|
sselid |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → 𝑑 ∈ ℕ ) |
| 5 |
|
vmacl |
⊢ ( 𝑑 ∈ ℕ → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( Λ ‘ 𝑑 ) ∈ ℝ ) |
| 7 |
|
dvdsdivcl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( 𝑘 / 𝑑 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) |
| 8 |
2 7
|
sselid |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( 𝑘 / 𝑑 ) ∈ ℕ ) |
| 9 |
|
vmacl |
⊢ ( ( 𝑘 / 𝑑 ) ∈ ℕ → ( Λ ‘ ( 𝑘 / 𝑑 ) ) ∈ ℝ ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( Λ ‘ ( 𝑘 / 𝑑 ) ) ∈ ℝ ) |
| 11 |
6 10
|
remulcld |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) ∈ ℝ ) |
| 12 |
1 11
|
fsumrecl |
⊢ ( 𝑘 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) ∈ ℝ ) |
| 13 |
|
vmacl |
⊢ ( 𝑘 ∈ ℕ → ( Λ ‘ 𝑘 ) ∈ ℝ ) |
| 14 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 15 |
14
|
relogcld |
⊢ ( 𝑘 ∈ ℕ → ( log ‘ 𝑘 ) ∈ ℝ ) |
| 16 |
13 15
|
remulcld |
⊢ ( 𝑘 ∈ ℕ → ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ∈ ℝ ) |
| 17 |
12 16
|
readdcld |
⊢ ( 𝑘 ∈ ℕ → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 18 |
17
|
recnd |
⊢ ( 𝑘 ∈ ℕ → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 20 |
19
|
fmpttd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) : ℕ ⟶ ℂ ) |
| 21 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ⊆ ℕ |
| 22 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) |
| 23 |
21 22
|
sselid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → 𝑚 ∈ ℕ ) |
| 24 |
|
breq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑥 ∥ 𝑘 ↔ 𝑥 ∥ 𝑚 ) ) |
| 25 |
24
|
rabbidv |
⊢ ( 𝑘 = 𝑚 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
| 26 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑚 → ( Λ ‘ ( 𝑘 / 𝑑 ) ) = ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝑘 = 𝑚 → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) ) |
| 29 |
25 28
|
sumeq12dv |
⊢ ( 𝑘 = 𝑚 → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( Λ ‘ 𝑘 ) = ( Λ ‘ 𝑚 ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( log ‘ 𝑘 ) = ( log ‘ 𝑚 ) ) |
| 32 |
30 31
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) = ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) |
| 33 |
29 32
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 34 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) |
| 35 |
|
ovex |
⊢ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ V |
| 36 |
33 34 35
|
fvmpt3i |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 37 |
23 36
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 38 |
37
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 39 |
|
logsqvma |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = ( ( log ‘ 𝑛 ) ↑ 2 ) ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = ( ( log ‘ 𝑛 ) ↑ 2 ) ) |
| 41 |
38 40
|
eqtr2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ 𝑛 ) ↑ 2 ) = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) ) |
| 42 |
41
|
mpteq2dva |
⊢ ( 𝑁 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) ) ) |
| 43 |
20 42
|
muinv |
⊢ ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) = ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) ) |
| 44 |
43
|
fveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑁 ) = ( ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) ‘ 𝑁 ) ) |
| 45 |
|
breq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝑥 ∥ 𝑘 ↔ 𝑥 ∥ 𝑁 ) ) |
| 46 |
45
|
rabbidv |
⊢ ( 𝑘 = 𝑁 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 47 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑁 → ( Λ ‘ ( 𝑘 / 𝑑 ) ) = ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) |
| 48 |
47
|
oveq2d |
⊢ ( 𝑘 = 𝑁 → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝑘 = 𝑁 ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) ) |
| 50 |
46 49
|
sumeq12dv |
⊢ ( 𝑘 = 𝑁 → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( Λ ‘ 𝑘 ) = ( Λ ‘ 𝑁 ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( log ‘ 𝑘 ) = ( log ‘ 𝑁 ) ) |
| 53 |
51 52
|
oveq12d |
⊢ ( 𝑘 = 𝑁 → ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) = ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) |
| 54 |
50 53
|
oveq12d |
⊢ ( 𝑘 = 𝑁 → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) ) |
| 55 |
54 34 35
|
fvmpt3i |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑁 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑗 = 𝑑 → ( μ ‘ 𝑗 ) = ( μ ‘ 𝑑 ) ) |
| 57 |
|
oveq2 |
⊢ ( 𝑗 = 𝑑 → ( 𝑖 / 𝑗 ) = ( 𝑖 / 𝑑 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( 𝑗 = 𝑑 → ( log ‘ ( 𝑖 / 𝑗 ) ) = ( log ‘ ( 𝑖 / 𝑑 ) ) ) |
| 59 |
58
|
oveq1d |
⊢ ( 𝑗 = 𝑑 → ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) = ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) |
| 60 |
56 59
|
oveq12d |
⊢ ( 𝑗 = 𝑑 → ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) ) |
| 61 |
60
|
cbvsumv |
⊢ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) |
| 62 |
|
breq2 |
⊢ ( 𝑖 = 𝑁 → ( 𝑥 ∥ 𝑖 ↔ 𝑥 ∥ 𝑁 ) ) |
| 63 |
62
|
rabbidv |
⊢ ( 𝑖 = 𝑁 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 64 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑁 → ( log ‘ ( 𝑖 / 𝑑 ) ) = ( log ‘ ( 𝑁 / 𝑑 ) ) ) |
| 65 |
64
|
oveq1d |
⊢ ( 𝑖 = 𝑁 → ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) = ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) |
| 66 |
65
|
oveq2d |
⊢ ( 𝑖 = 𝑁 → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝑖 = 𝑁 ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) ) |
| 68 |
63 67
|
sumeq12dv |
⊢ ( 𝑖 = 𝑁 → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) ) |
| 69 |
61 68
|
eqtrid |
⊢ ( 𝑖 = 𝑁 → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) ) |
| 70 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ⊆ ℕ |
| 71 |
|
dvdsdivcl |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) → ( 𝑖 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) |
| 72 |
70 71
|
sselid |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) → ( 𝑖 / 𝑗 ) ∈ ℕ ) |
| 73 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑖 / 𝑗 ) → ( log ‘ 𝑛 ) = ( log ‘ ( 𝑖 / 𝑗 ) ) ) |
| 74 |
73
|
oveq1d |
⊢ ( 𝑛 = ( 𝑖 / 𝑗 ) → ( ( log ‘ 𝑛 ) ↑ 2 ) = ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) |
| 75 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) |
| 76 |
|
ovex |
⊢ ( ( log ‘ 𝑛 ) ↑ 2 ) ∈ V |
| 77 |
74 75 76
|
fvmpt3i |
⊢ ( ( 𝑖 / 𝑗 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) = ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) |
| 78 |
72 77
|
syl |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) → ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) = ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) |
| 79 |
78
|
oveq2d |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ) → ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) = ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) ) |
| 80 |
79
|
sumeq2dv |
⊢ ( 𝑖 ∈ ℕ → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) = Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) ) |
| 81 |
80
|
mpteq2ia |
⊢ ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) = ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) ) |
| 82 |
|
sumex |
⊢ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) ∈ V |
| 83 |
69 81 82
|
fvmpt3i |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) ‘ 𝑁 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) ) |
| 84 |
44 55 83
|
3eqtr3rd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) ) |