Metamath Proof Explorer


Theorem logsqvma2

Description: The Möbius inverse of logsqvma . Equation 10.4.8 of Shapiro, p. 418. (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Assertion logsqvma2 ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) )

Proof

Step Hyp Ref Expression
1 dvdsfi ( 𝑘 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ∈ Fin )
2 ssrab2 { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ⊆ ℕ
3 simpr ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ) → 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } )
4 2 3 sselid ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ) → 𝑑 ∈ ℕ )
5 vmacl ( 𝑑 ∈ ℕ → ( Λ ‘ 𝑑 ) ∈ ℝ )
6 4 5 syl ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ) → ( Λ ‘ 𝑑 ) ∈ ℝ )
7 dvdsdivcl ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ) → ( 𝑘 / 𝑑 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } )
8 2 7 sselid ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ) → ( 𝑘 / 𝑑 ) ∈ ℕ )
9 vmacl ( ( 𝑘 / 𝑑 ) ∈ ℕ → ( Λ ‘ ( 𝑘 / 𝑑 ) ) ∈ ℝ )
10 8 9 syl ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ) → ( Λ ‘ ( 𝑘 / 𝑑 ) ) ∈ ℝ )
11 6 10 remulcld ( ( 𝑘 ∈ ℕ ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) ∈ ℝ )
12 1 11 fsumrecl ( 𝑘 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) ∈ ℝ )
13 vmacl ( 𝑘 ∈ ℕ → ( Λ ‘ 𝑘 ) ∈ ℝ )
14 nnrp ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ )
15 14 relogcld ( 𝑘 ∈ ℕ → ( log ‘ 𝑘 ) ∈ ℝ )
16 13 15 remulcld ( 𝑘 ∈ ℕ → ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ∈ ℝ )
17 12 16 readdcld ( 𝑘 ∈ ℕ → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ ℝ )
18 17 recnd ( 𝑘 ∈ ℕ → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ ℂ )
19 18 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ ℂ )
20 19 fmpttd ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) : ℕ ⟶ ℂ )
21 ssrab2 { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ⊆ ℕ
22 simpr ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } )
23 21 22 sselid ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → 𝑚 ∈ ℕ )
24 breq2 ( 𝑘 = 𝑚 → ( 𝑥𝑘𝑥𝑚 ) )
25 24 rabbidv ( 𝑘 = 𝑚 → { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } = { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } )
26 fvoveq1 ( 𝑘 = 𝑚 → ( Λ ‘ ( 𝑘 / 𝑑 ) ) = ( Λ ‘ ( 𝑚 / 𝑑 ) ) )
27 26 oveq2d ( 𝑘 = 𝑚 → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) )
28 27 adantr ( ( 𝑘 = 𝑚𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) )
29 25 28 sumeq12dv ( 𝑘 = 𝑚 → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) )
30 fveq2 ( 𝑘 = 𝑚 → ( Λ ‘ 𝑘 ) = ( Λ ‘ 𝑚 ) )
31 fveq2 ( 𝑘 = 𝑚 → ( log ‘ 𝑘 ) = ( log ‘ 𝑚 ) )
32 30 31 oveq12d ( 𝑘 = 𝑚 → ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) = ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) )
33 29 32 oveq12d ( 𝑘 = 𝑚 → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) )
34 eqid ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) )
35 ovex ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ∈ V
36 33 34 35 fvmpt3i ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) )
37 23 36 syl ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ) → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) )
38 37 sumeq2dv ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) )
39 logsqvma ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = ( ( log ‘ 𝑛 ) ↑ 2 ) )
40 39 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑚 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑚 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = ( ( log ‘ 𝑛 ) ↑ 2 ) )
41 38 40 eqtr2d ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( log ‘ 𝑛 ) ↑ 2 ) = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) )
42 41 mpteq2dva ( 𝑁 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑛 } ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑚 ) ) )
43 20 42 muinv ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) = ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) )
44 43 fveq1d ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑁 ) = ( ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) ‘ 𝑁 ) )
45 breq2 ( 𝑘 = 𝑁 → ( 𝑥𝑘𝑥𝑁 ) )
46 45 rabbidv ( 𝑘 = 𝑁 → { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } = { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } )
47 fvoveq1 ( 𝑘 = 𝑁 → ( Λ ‘ ( 𝑘 / 𝑑 ) ) = ( Λ ‘ ( 𝑁 / 𝑑 ) ) )
48 47 oveq2d ( 𝑘 = 𝑁 → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) )
49 48 adantr ( ( 𝑘 = 𝑁𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ) → ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) )
50 46 49 sumeq12dv ( 𝑘 = 𝑁 → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) )
51 fveq2 ( 𝑘 = 𝑁 → ( Λ ‘ 𝑘 ) = ( Λ ‘ 𝑁 ) )
52 fveq2 ( 𝑘 = 𝑁 → ( log ‘ 𝑘 ) = ( log ‘ 𝑁 ) )
53 51 52 oveq12d ( 𝑘 = 𝑁 → ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) = ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) )
54 50 53 oveq12d ( 𝑘 = 𝑁 → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) )
55 54 34 35 fvmpt3i ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑘 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑘 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) ) ) ‘ 𝑁 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) )
56 fveq2 ( 𝑗 = 𝑑 → ( μ ‘ 𝑗 ) = ( μ ‘ 𝑑 ) )
57 oveq2 ( 𝑗 = 𝑑 → ( 𝑖 / 𝑗 ) = ( 𝑖 / 𝑑 ) )
58 57 fveq2d ( 𝑗 = 𝑑 → ( log ‘ ( 𝑖 / 𝑗 ) ) = ( log ‘ ( 𝑖 / 𝑑 ) ) )
59 58 oveq1d ( 𝑗 = 𝑑 → ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) = ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) )
60 56 59 oveq12d ( 𝑗 = 𝑑 → ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) )
61 60 cbvsumv Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) )
62 breq2 ( 𝑖 = 𝑁 → ( 𝑥𝑖𝑥𝑁 ) )
63 62 rabbidv ( 𝑖 = 𝑁 → { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } = { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } )
64 fvoveq1 ( 𝑖 = 𝑁 → ( log ‘ ( 𝑖 / 𝑑 ) ) = ( log ‘ ( 𝑁 / 𝑑 ) ) )
65 64 oveq1d ( 𝑖 = 𝑁 → ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) = ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) )
66 65 oveq2d ( 𝑖 = 𝑁 → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) )
67 66 adantr ( ( 𝑖 = 𝑁𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) )
68 63 67 sumeq12dv ( 𝑖 = 𝑁 → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑖 / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) )
69 61 68 eqtrid ( 𝑖 = 𝑁 → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) )
70 ssrab2 { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ⊆ ℕ
71 dvdsdivcl ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ) → ( 𝑖 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } )
72 70 71 sselid ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ) → ( 𝑖 / 𝑗 ) ∈ ℕ )
73 fveq2 ( 𝑛 = ( 𝑖 / 𝑗 ) → ( log ‘ 𝑛 ) = ( log ‘ ( 𝑖 / 𝑗 ) ) )
74 73 oveq1d ( 𝑛 = ( 𝑖 / 𝑗 ) → ( ( log ‘ 𝑛 ) ↑ 2 ) = ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) )
75 eqid ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) )
76 ovex ( ( log ‘ 𝑛 ) ↑ 2 ) ∈ V
77 74 75 76 fvmpt3i ( ( 𝑖 / 𝑗 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) = ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) )
78 72 77 syl ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ) → ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) = ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) )
79 78 oveq2d ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ) → ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) = ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) )
80 79 sumeq2dv ( 𝑖 ∈ ℕ → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) = Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) )
81 80 mpteq2ia ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) = ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) )
82 sumex Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑗 ) · ( ( log ‘ ( 𝑖 / 𝑗 ) ) ↑ 2 ) ) ∈ V
83 69 81 82 fvmpt3i ( 𝑁 ∈ ℕ → ( ( 𝑖 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑖 } ( ( μ ‘ 𝑗 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ‘ ( 𝑖 / 𝑗 ) ) ) ) ‘ 𝑁 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) )
84 44 55 83 3eqtr3rd ( 𝑁 ∈ ℕ → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑁 / 𝑑 ) ) ↑ 2 ) ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝑁 } ( ( Λ ‘ 𝑑 ) · ( Λ ‘ ( 𝑁 / 𝑑 ) ) ) + ( ( Λ ‘ 𝑁 ) · ( log ‘ 𝑁 ) ) ) )