| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsfi | ⊢ ( 𝑁  ∈  ℕ  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ∈  Fin ) | 
						
							| 2 |  | fzfid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( 1 ... 𝑑 )  ∈  Fin ) | 
						
							| 3 |  | elrabi | ⊢ ( 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  →  𝑑  ∈  ℕ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  𝑑  ∈  ℕ ) | 
						
							| 5 |  | dvdsssfz1 | ⊢ ( 𝑑  ∈  ℕ  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 }  ⊆  ( 1 ... 𝑑 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 }  ⊆  ( 1 ... 𝑑 ) ) | 
						
							| 7 | 2 6 | ssfid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 }  ∈  Fin ) | 
						
							| 8 |  | elrabi | ⊢ ( 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 }  →  𝑢  ∈  ℕ ) | 
						
							| 9 | 8 | ad2antll | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ) )  →  𝑢  ∈  ℕ ) | 
						
							| 10 |  | vmacl | ⊢ ( 𝑢  ∈  ℕ  →  ( Λ ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ) )  →  ( Λ ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑥  =  𝑢  →  ( 𝑥  ∥  𝑑  ↔  𝑢  ∥  𝑑 ) ) | 
						
							| 13 | 12 | elrab | ⊢ ( 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 }  ↔  ( 𝑢  ∈  ℕ  ∧  𝑢  ∥  𝑑 ) ) | 
						
							| 14 | 13 | simprbi | ⊢ ( 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 }  →  𝑢  ∥  𝑑 ) | 
						
							| 15 | 14 | ad2antll | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ) )  →  𝑢  ∥  𝑑 ) | 
						
							| 16 | 3 | ad2antrl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ) )  →  𝑑  ∈  ℕ ) | 
						
							| 17 |  | nndivdvds | ⊢ ( ( 𝑑  ∈  ℕ  ∧  𝑢  ∈  ℕ )  →  ( 𝑢  ∥  𝑑  ↔  ( 𝑑  /  𝑢 )  ∈  ℕ ) ) | 
						
							| 18 | 16 9 17 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ) )  →  ( 𝑢  ∥  𝑑  ↔  ( 𝑑  /  𝑢 )  ∈  ℕ ) ) | 
						
							| 19 | 15 18 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ) )  →  ( 𝑑  /  𝑢 )  ∈  ℕ ) | 
						
							| 20 |  | vmacl | ⊢ ( ( 𝑑  /  𝑢 )  ∈  ℕ  →  ( Λ ‘ ( 𝑑  /  𝑢 ) )  ∈  ℝ ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ) )  →  ( Λ ‘ ( 𝑑  /  𝑢 ) )  ∈  ℝ ) | 
						
							| 22 | 11 21 | remulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ) )  →  ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  ∈  ℝ ) | 
						
							| 23 | 22 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ) )  →  ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  ∈  ℂ ) | 
						
							| 24 | 23 | anassrs | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } )  →  ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  ∈  ℂ ) | 
						
							| 25 | 7 24 | fsumcl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  ∈  ℂ ) | 
						
							| 26 |  | vmacl | ⊢ ( 𝑑  ∈  ℕ  →  ( Λ ‘ 𝑑 )  ∈  ℝ ) | 
						
							| 27 | 4 26 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( Λ ‘ 𝑑 )  ∈  ℝ ) | 
						
							| 28 | 4 | nnrpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  𝑑  ∈  ℝ+ ) | 
						
							| 29 | 28 | relogcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( log ‘ 𝑑 )  ∈  ℝ ) | 
						
							| 30 | 27 29 | remulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) )  ∈  ℝ ) | 
						
							| 31 | 30 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) )  ∈  ℂ ) | 
						
							| 32 | 1 25 31 | fsumadd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  +  ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) )  =  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  +  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) ) ) | 
						
							| 33 |  | id | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ ) | 
						
							| 34 |  | fvoveq1 | ⊢ ( 𝑑  =  ( 𝑢  ·  𝑘 )  →  ( Λ ‘ ( 𝑑  /  𝑢 ) )  =  ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝑑  =  ( 𝑢  ·  𝑘 )  →  ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  =  ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) ) ) ) | 
						
							| 36 | 33 35 23 | fsumdvdscom | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  =  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) ) ) ) | 
						
							| 37 |  | ssrab2 | ⊢ { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) }  ⊆  ℕ | 
						
							| 38 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } )  →  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ) | 
						
							| 39 | 37 38 | sselid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } )  →  𝑘  ∈  ℕ ) | 
						
							| 40 | 39 | nncnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } )  →  𝑘  ∈  ℂ ) | 
						
							| 41 |  | ssrab2 | ⊢ { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 }  ⊆  ℕ | 
						
							| 42 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) | 
						
							| 43 | 41 42 | sselid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  𝑢  ∈  ℕ ) | 
						
							| 44 | 43 | nncnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  𝑢  ∈  ℂ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } )  →  𝑢  ∈  ℂ ) | 
						
							| 46 | 43 | nnne0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  𝑢  ≠  0 ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } )  →  𝑢  ≠  0 ) | 
						
							| 48 | 40 45 47 | divcan3d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } )  →  ( ( 𝑢  ·  𝑘 )  /  𝑢 )  =  𝑘 ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } )  →  ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) )  =  ( Λ ‘ 𝑘 ) ) | 
						
							| 50 | 49 | sumeq2dv | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) )  =  Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( Λ ‘ 𝑘 ) ) | 
						
							| 51 |  | dvdsdivcl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( 𝑁  /  𝑢 )  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) | 
						
							| 52 | 41 51 | sselid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( 𝑁  /  𝑢 )  ∈  ℕ ) | 
						
							| 53 |  | vmasum | ⊢ ( ( 𝑁  /  𝑢 )  ∈  ℕ  →  Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( Λ ‘ 𝑘 )  =  ( log ‘ ( 𝑁  /  𝑢 ) ) ) | 
						
							| 54 | 52 53 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( Λ ‘ 𝑘 )  =  ( log ‘ ( 𝑁  /  𝑢 ) ) ) | 
						
							| 55 |  | nnrp | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  𝑁  ∈  ℝ+ ) | 
						
							| 57 | 43 | nnrpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  𝑢  ∈  ℝ+ ) | 
						
							| 58 | 56 57 | relogdivd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( log ‘ ( 𝑁  /  𝑢 ) )  =  ( ( log ‘ 𝑁 )  −  ( log ‘ 𝑢 ) ) ) | 
						
							| 59 | 50 54 58 | 3eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) )  =  ( ( log ‘ 𝑁 )  −  ( log ‘ 𝑢 ) ) ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( ( Λ ‘ 𝑢 )  ·  Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) ) )  =  ( ( Λ ‘ 𝑢 )  ·  ( ( log ‘ 𝑁 )  −  ( log ‘ 𝑢 ) ) ) ) | 
						
							| 61 |  | fzfid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( 1 ... ( 𝑁  /  𝑢 ) )  ∈  Fin ) | 
						
							| 62 |  | dvdsssfz1 | ⊢ ( ( 𝑁  /  𝑢 )  ∈  ℕ  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) }  ⊆  ( 1 ... ( 𝑁  /  𝑢 ) ) ) | 
						
							| 63 | 52 62 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) }  ⊆  ( 1 ... ( 𝑁  /  𝑢 ) ) ) | 
						
							| 64 | 61 63 | ssfid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) }  ∈  Fin ) | 
						
							| 65 | 43 10 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( Λ ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 66 | 65 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( Λ ‘ 𝑢 )  ∈  ℂ ) | 
						
							| 67 |  | vmacl | ⊢ ( 𝑘  ∈  ℕ  →  ( Λ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 68 | 39 67 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } )  →  ( Λ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 69 | 68 | recnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } )  →  ( Λ ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 70 | 49 69 | eqeltrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  ∧  𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } )  →  ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) )  ∈  ℂ ) | 
						
							| 71 | 64 66 70 | fsummulc2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( ( Λ ‘ 𝑢 )  ·  Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) ) )  =  Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) ) ) ) | 
						
							| 72 |  | relogcl | ⊢ ( 𝑁  ∈  ℝ+  →  ( log ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 73 | 72 | recnd | ⊢ ( 𝑁  ∈  ℝ+  →  ( log ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 74 | 56 73 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( log ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 75 | 57 | relogcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( log ‘ 𝑢 )  ∈  ℝ ) | 
						
							| 76 | 75 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( log ‘ 𝑢 )  ∈  ℂ ) | 
						
							| 77 | 66 74 76 | subdid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( ( Λ ‘ 𝑢 )  ·  ( ( log ‘ 𝑁 )  −  ( log ‘ 𝑢 ) ) )  =  ( ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  −  ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) ) ) ) | 
						
							| 78 | 60 71 77 | 3eqtr3d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) ) )  =  ( ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  −  ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) ) ) ) | 
						
							| 79 | 78 | sumeq2dv | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } Σ 𝑘  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  ( 𝑁  /  𝑢 ) } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( ( 𝑢  ·  𝑘 )  /  𝑢 ) ) )  =  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  −  ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) ) ) ) | 
						
							| 80 | 66 74 | mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  ∈  ℂ ) | 
						
							| 81 | 66 76 | mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) )  ∈  ℂ ) | 
						
							| 82 | 1 80 81 | fsumsub | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  −  ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) ) )  =  ( Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  −  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) ) ) ) | 
						
							| 83 | 55 73 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( log ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 84 | 83 | sqvald | ⊢ ( 𝑁  ∈  ℕ  →  ( ( log ‘ 𝑁 ) ↑ 2 )  =  ( ( log ‘ 𝑁 )  ·  ( log ‘ 𝑁 ) ) ) | 
						
							| 85 |  | vmasum | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( Λ ‘ 𝑢 )  =  ( log ‘ 𝑁 ) ) | 
						
							| 86 | 85 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  =  ( ( log ‘ 𝑁 )  ·  ( log ‘ 𝑁 ) ) ) | 
						
							| 87 | 1 83 66 | fsummulc1 | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  =  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) ) ) | 
						
							| 88 | 84 86 87 | 3eqtr2rd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  =  ( ( log ‘ 𝑁 ) ↑ 2 ) ) | 
						
							| 89 |  | fveq2 | ⊢ ( 𝑢  =  𝑑  →  ( Λ ‘ 𝑢 )  =  ( Λ ‘ 𝑑 ) ) | 
						
							| 90 |  | fveq2 | ⊢ ( 𝑢  =  𝑑  →  ( log ‘ 𝑢 )  =  ( log ‘ 𝑑 ) ) | 
						
							| 91 | 89 90 | oveq12d | ⊢ ( 𝑢  =  𝑑  →  ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) )  =  ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) ) | 
						
							| 92 | 91 | cbvsumv | ⊢ Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) )  =  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) | 
						
							| 93 | 92 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) )  =  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) ) | 
						
							| 94 | 88 93 | oveq12d | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  −  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) ) )  =  ( ( ( log ‘ 𝑁 ) ↑ 2 )  −  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) ) ) | 
						
							| 95 | 82 94 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑁 ) )  −  ( ( Λ ‘ 𝑢 )  ·  ( log ‘ 𝑢 ) ) )  =  ( ( ( log ‘ 𝑁 ) ↑ 2 )  −  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) ) ) | 
						
							| 96 | 36 79 95 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  =  ( ( ( log ‘ 𝑁 ) ↑ 2 )  −  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) ) ) | 
						
							| 97 | 96 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  +  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) )  =  ( ( ( ( log ‘ 𝑁 ) ↑ 2 )  −  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) )  +  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) ) ) | 
						
							| 98 | 83 | sqcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( log ‘ 𝑁 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 99 | 1 31 | fsumcl | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) )  ∈  ℂ ) | 
						
							| 100 | 98 99 | npcand | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ( log ‘ 𝑁 ) ↑ 2 )  −  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) )  +  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) )  =  ( ( log ‘ 𝑁 ) ↑ 2 ) ) | 
						
							| 101 | 32 97 100 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑑  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ( Σ 𝑢  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑑 } ( ( Λ ‘ 𝑢 )  ·  ( Λ ‘ ( 𝑑  /  𝑢 ) ) )  +  ( ( Λ ‘ 𝑑 )  ·  ( log ‘ 𝑑 ) ) )  =  ( ( log ‘ 𝑁 ) ↑ 2 ) ) |