Metamath Proof Explorer


Theorem vmasum

Description: The sum of the von Mangoldt function over the divisors of n . Equation 9.2.4 of Shapiro, p. 328 and theorem 2.10 in ApostolNT p. 32. (Contributed by Mario Carneiro, 15-Apr-2016)

Ref Expression
Assertion vmasum ( 𝐴 ∈ ℕ → Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ( Λ ‘ 𝑛 ) = ( log ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑛 = ( 𝑝𝑘 ) → ( Λ ‘ 𝑛 ) = ( Λ ‘ ( 𝑝𝑘 ) ) )
2 dvdsfi ( 𝐴 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ∈ Fin )
3 ssrab2 { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ⊆ ℕ
4 3 a1i ( 𝐴 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ⊆ ℕ )
5 fzfid ( 𝐴 ∈ ℕ → ( 1 ... 𝐴 ) ∈ Fin )
6 inss1 ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 )
7 ssfi ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) ) → ( ( 1 ... 𝐴 ) ∩ ℙ ) ∈ Fin )
8 5 6 7 sylancl ( 𝐴 ∈ ℕ → ( ( 1 ... 𝐴 ) ∩ ℙ ) ∈ Fin )
9 pccl ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 )
10 9 ancoms ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 )
11 10 nn0zd ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℤ )
12 fznn ( ( 𝑝 pCnt 𝐴 ) ∈ ℤ → ( 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) )
13 11 12 syl ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) )
14 13 anbi2d ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) )
15 an12 ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) )
16 prmz ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ )
17 16 adantl ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ )
18 iddvdsexp ( ( 𝑝 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∥ ( 𝑝𝑘 ) )
19 17 18 sylan ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∥ ( 𝑝𝑘 ) )
20 16 ad2antlr ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℤ )
21 prmnn ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ )
22 21 adantl ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℕ )
23 nnnn0 ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 )
24 nnexpcl ( ( 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑝𝑘 ) ∈ ℕ )
25 22 23 24 syl2an ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝𝑘 ) ∈ ℕ )
26 25 nnzd ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝𝑘 ) ∈ ℤ )
27 nnz ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ )
28 27 ad2antrr ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℤ )
29 dvdstr ( ( 𝑝 ∈ ℤ ∧ ( 𝑝𝑘 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝑝𝑘 ) ∧ ( 𝑝𝑘 ) ∥ 𝐴 ) → 𝑝𝐴 ) )
30 20 26 28 29 syl3anc ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ∥ ( 𝑝𝑘 ) ∧ ( 𝑝𝑘 ) ∥ 𝐴 ) → 𝑝𝐴 ) )
31 19 30 mpand ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝𝑘 ) ∥ 𝐴𝑝𝐴 ) )
32 simpll ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℕ )
33 dvdsle ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 𝑝𝐴𝑝𝐴 ) )
34 20 32 33 syl2anc ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝𝐴𝑝𝐴 ) )
35 31 34 syld ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝𝑘 ) ∥ 𝐴𝑝𝐴 ) )
36 21 ad2antlr ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℕ )
37 fznn ( 𝐴 ∈ ℤ → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝𝐴 ) ) )
38 37 baibd ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ 𝑝𝐴 ) )
39 28 36 38 syl2anc ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ 𝑝𝐴 ) )
40 35 39 sylibrd ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝𝑘 ) ∥ 𝐴𝑝 ∈ ( 1 ... 𝐴 ) ) )
41 40 pm4.71rd ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝𝑘 ) ∥ 𝐴 ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝𝑘 ) ∥ 𝐴 ) ) )
42 breq1 ( 𝑥 = ( 𝑝𝑘 ) → ( 𝑥𝐴 ↔ ( 𝑝𝑘 ) ∥ 𝐴 ) )
43 42 elrab3 ( ( 𝑝𝑘 ) ∈ ℕ → ( ( 𝑝𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ↔ ( 𝑝𝑘 ) ∥ 𝐴 ) )
44 25 43 syl ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ↔ ( 𝑝𝑘 ) ∥ 𝐴 ) )
45 simplr ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℙ )
46 23 adantl ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 )
47 pcdvdsb ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑝𝑘 ) ∥ 𝐴 ) )
48 45 28 46 47 syl3anc ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑝𝑘 ) ∥ 𝐴 ) )
49 48 anbi2d ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝𝑘 ) ∥ 𝐴 ) ) )
50 41 44 49 3bitr4rd ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑝𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) )
51 50 pm5.32da ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑘 ∈ ℕ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) ) )
52 15 51 bitrid ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) ) )
53 14 52 bitrd ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) ) )
54 53 pm5.32da ( 𝐴 ∈ ℕ → ( ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑝𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) ) ) )
55 elin ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑝 ∈ ℙ ) )
56 55 anbi1i ( ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) )
57 anass ( ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) )
58 an12 ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) )
59 56 57 58 3bitri ( ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) )
60 anass ( ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑝𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) ) )
61 54 59 60 3bitr4g ( 𝐴 ∈ ℕ → ( ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) ) )
62 4 sselda ( ( 𝐴 ∈ ℕ ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) → 𝑛 ∈ ℕ )
63 vmacl ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ )
64 62 63 syl ( ( 𝐴 ∈ ℕ ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) → ( Λ ‘ 𝑛 ) ∈ ℝ )
65 64 recnd ( ( 𝐴 ∈ ℕ ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ) → ( Λ ‘ 𝑛 ) ∈ ℂ )
66 simprr ( ( 𝐴 ∈ ℕ ∧ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( Λ ‘ 𝑛 ) = 0 )
67 1 2 4 8 61 65 66 fsumvma ( 𝐴 ∈ ℕ → Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ( Λ ‘ 𝑛 ) = Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝𝑘 ) ) )
68 elinel2 ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ℙ )
69 68 ad2antlr ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) → 𝑝 ∈ ℙ )
70 elfznn ( 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) → 𝑘 ∈ ℕ )
71 70 adantl ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) → 𝑘 ∈ ℕ )
72 vmappw ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝𝑘 ) ) = ( log ‘ 𝑝 ) )
73 69 71 72 syl2anc ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) → ( Λ ‘ ( 𝑝𝑘 ) ) = ( log ‘ 𝑝 ) )
74 73 sumeq2dv ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( log ‘ 𝑝 ) )
75 fzfid ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ∈ Fin )
76 68 21 syl ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ℕ )
77 76 adantl ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ )
78 77 nnrpd ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ )
79 78 relogcld ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ )
80 79 recnd ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ )
81 fsumconst ( ( ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ∈ Fin ∧ ( log ‘ 𝑝 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( log ‘ 𝑝 ) = ( ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) · ( log ‘ 𝑝 ) ) )
82 75 80 81 syl2anc ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( log ‘ 𝑝 ) = ( ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) · ( log ‘ 𝑝 ) ) )
83 68 10 sylan2 ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 )
84 hashfz1 ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt 𝐴 ) )
85 83 84 syl ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt 𝐴 ) )
86 85 oveq1d ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) · ( log ‘ 𝑝 ) ) = ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) )
87 74 82 86 3eqtrd ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝𝑘 ) ) = ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) )
88 87 sumeq2dv ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝𝑘 ) ) = Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) )
89 pclogsum ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) = ( log ‘ 𝐴 ) )
90 67 88 89 3eqtrd ( 𝐴 ∈ ℕ → Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥𝐴 } ( Λ ‘ 𝑛 ) = ( log ‘ 𝐴 ) )