| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝑛 ) = ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
| 2 |
|
dvdsfi |
⊢ ( 𝐴 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ∈ Fin ) |
| 3 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ⊆ ℕ |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ⊆ ℕ ) |
| 5 |
|
fzfid |
⊢ ( 𝐴 ∈ ℕ → ( 1 ... 𝐴 ) ∈ Fin ) |
| 6 |
|
inss1 |
⊢ ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) |
| 7 |
|
ssfi |
⊢ ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) ) → ( ( 1 ... 𝐴 ) ∩ ℙ ) ∈ Fin ) |
| 8 |
5 6 7
|
sylancl |
⊢ ( 𝐴 ∈ ℕ → ( ( 1 ... 𝐴 ) ∩ ℙ ) ∈ Fin ) |
| 9 |
|
pccl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 10 |
9
|
ancoms |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 11 |
10
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) |
| 12 |
|
fznn |
⊢ ( ( 𝑝 pCnt 𝐴 ) ∈ ℤ → ( 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 14 |
13
|
anbi2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 15 |
|
an12 |
⊢ ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 16 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 18 |
|
iddvdsexp |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∥ ( 𝑝 ↑ 𝑘 ) ) |
| 19 |
17 18
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∥ ( 𝑝 ↑ 𝑘 ) ) |
| 20 |
16
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℤ ) |
| 21 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℕ ) |
| 23 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 24 |
|
nnexpcl |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
| 25 |
22 23 24
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
| 26 |
25
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℤ ) |
| 27 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 29 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) → 𝑝 ∥ 𝐴 ) ) |
| 30 |
20 26 28 29
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ∥ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) → 𝑝 ∥ 𝐴 ) ) |
| 31 |
19 30
|
mpand |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 → 𝑝 ∥ 𝐴 ) ) |
| 32 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℕ ) |
| 33 |
|
dvdsle |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
| 34 |
20 32 33
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
| 35 |
31 34
|
syld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
| 36 |
21
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℕ ) |
| 37 |
|
fznn |
⊢ ( 𝐴 ∈ ℤ → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴 ) ) ) |
| 38 |
37
|
baibd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ 𝑝 ≤ 𝐴 ) ) |
| 39 |
28 36 38
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ 𝑝 ≤ 𝐴 ) ) |
| 40 |
35 39
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 → 𝑝 ∈ ( 1 ... 𝐴 ) ) ) |
| 41 |
40
|
pm4.71rd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) ) |
| 42 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑝 ↑ 𝑘 ) → ( 𝑥 ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) |
| 43 |
42
|
elrab3 |
⊢ ( ( 𝑝 ↑ 𝑘 ) ∈ ℕ → ( ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ↔ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) |
| 44 |
25 43
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ↔ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) |
| 45 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℙ ) |
| 46 |
23
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 47 |
|
pcdvdsb |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) |
| 48 |
45 28 46 47
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) |
| 49 |
48
|
anbi2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝 ↑ 𝑘 ) ∥ 𝐴 ) ) ) |
| 50 |
41 44 49
|
3bitr4rd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) |
| 51 |
50
|
pm5.32da |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑘 ∈ ℕ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) |
| 52 |
15 51
|
bitrid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑘 ≤ ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) |
| 53 |
14 52
|
bitrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) |
| 54 |
53
|
pm5.32da |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) ) |
| 55 |
|
elin |
⊢ ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑝 ∈ ℙ ) ) |
| 56 |
55
|
anbi1i |
⊢ ( ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 57 |
|
anass |
⊢ ( ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 58 |
|
an12 |
⊢ ( ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 59 |
56 57 58
|
3bitri |
⊢ ( ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ) ) |
| 60 |
|
anass |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ↔ ( 𝑝 ∈ ℙ ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) |
| 61 |
54 59 60
|
3bitr4g |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) ) ) |
| 62 |
4
|
sselda |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) → 𝑛 ∈ ℕ ) |
| 63 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 64 |
62 63
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 65 |
64
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
| 66 |
|
simprr |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( Λ ‘ 𝑛 ) = 0 ) |
| 67 |
1 2 4 8 61 65 66
|
fsumvma |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ( Λ ‘ 𝑛 ) = Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
| 68 |
|
elinel2 |
⊢ ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ℙ ) |
| 69 |
68
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) → 𝑝 ∈ ℙ ) |
| 70 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) → 𝑘 ∈ ℕ ) |
| 71 |
70
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) → 𝑘 ∈ ℕ ) |
| 72 |
|
vmappw |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
| 73 |
69 71 72
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
| 74 |
73
|
sumeq2dv |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( log ‘ 𝑝 ) ) |
| 75 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ∈ Fin ) |
| 76 |
68 21
|
syl |
⊢ ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ℕ ) |
| 77 |
76
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 78 |
77
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 79 |
78
|
relogcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 80 |
79
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 81 |
|
fsumconst |
⊢ ( ( ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ∈ Fin ∧ ( log ‘ 𝑝 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( log ‘ 𝑝 ) = ( ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) · ( log ‘ 𝑝 ) ) ) |
| 82 |
75 80 81
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( log ‘ 𝑝 ) = ( ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) · ( log ‘ 𝑝 ) ) ) |
| 83 |
68 10
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 84 |
|
hashfz1 |
⊢ ( ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt 𝐴 ) ) |
| 85 |
83 84
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) = ( 𝑝 pCnt 𝐴 ) ) |
| 86 |
85
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( ( ♯ ‘ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ) · ( log ‘ 𝑝 ) ) = ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) ) |
| 87 |
74 82 86
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) ) |
| 88 |
87
|
sumeq2dv |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( 𝑝 pCnt 𝐴 ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) ) |
| 89 |
|
pclogsum |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) = ( log ‘ 𝐴 ) ) |
| 90 |
67 88 89
|
3eqtrd |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴 } ( Λ ‘ 𝑛 ) = ( log ‘ 𝐴 ) ) |