Metamath Proof Explorer


Theorem vmasum

Description: The sum of the von Mangoldt function over the divisors of n . Equation 9.2.4 of Shapiro, p. 328 and theorem 2.10 in ApostolNT p. 32. (Contributed by Mario Carneiro, 15-Apr-2016)

Ref Expression
Assertion vmasum Anx|xAΛn=logA

Proof

Step Hyp Ref Expression
1 fveq2 n=pkΛn=Λpk
2 fzfid A1AFin
3 dvdsssfz1 Ax|xA1A
4 2 3 ssfid Ax|xAFin
5 ssrab2 x|xA
6 5 a1i Ax|xA
7 inss1 1A1A
8 ssfi 1AFin1A1A1AFin
9 2 7 8 sylancl A1AFin
10 pccl pAppCntA0
11 10 ancoms ApppCntA0
12 11 nn0zd ApppCntA
13 fznn ppCntAk1ppCntAkkppCntA
14 12 13 syl Apk1ppCntAkkppCntA
15 14 anbi2d App1Ak1ppCntAp1AkkppCntA
16 an12 p1AkkppCntAkp1AkppCntA
17 prmz pp
18 17 adantl App
19 iddvdsexp pkppk
20 18 19 sylan Apkppk
21 17 ad2antlr Apkp
22 prmnn pp
23 22 adantl App
24 nnnn0 kk0
25 nnexpcl pk0pk
26 23 24 25 syl2an Apkpk
27 26 nnzd Apkpk
28 nnz AA
29 28 ad2antrr ApkA
30 dvdstr ppkAppkpkApA
31 21 27 29 30 syl3anc ApkppkpkApA
32 20 31 mpand ApkpkApA
33 simpll ApkA
34 dvdsle pApApA
35 21 33 34 syl2anc ApkpApA
36 32 35 syld ApkpkApA
37 22 ad2antlr Apkp
38 fznn Ap1AppA
39 38 baibd App1ApA
40 29 37 39 syl2anc Apkp1ApA
41 36 40 sylibrd ApkpkAp1A
42 41 pm4.71rd ApkpkAp1ApkA
43 breq1 x=pkxApkA
44 43 elrab3 pkpkx|xApkA
45 26 44 syl Apkpkx|xApkA
46 simplr Apkp
47 24 adantl Apkk0
48 pcdvdsb pAk0kppCntApkA
49 46 29 47 48 syl3anc ApkkppCntApkA
50 49 anbi2d Apkp1AkppCntAp1ApkA
51 42 45 50 3bitr4rd Apkp1AkppCntApkx|xA
52 51 pm5.32da Apkp1AkppCntAkpkx|xA
53 16 52 bitrid App1AkkppCntAkpkx|xA
54 15 53 bitrd App1Ak1ppCntAkpkx|xA
55 54 pm5.32da App1Ak1ppCntApkpkx|xA
56 elin p1Ap1Ap
57 56 anbi1i p1Ak1ppCntAp1Apk1ppCntA
58 anass p1Apk1ppCntAp1Apk1ppCntA
59 an12 p1Apk1ppCntApp1Ak1ppCntA
60 57 58 59 3bitri p1Ak1ppCntApp1Ak1ppCntA
61 anass pkpkx|xApkpkx|xA
62 55 60 61 3bitr4g Ap1Ak1ppCntApkpkx|xA
63 6 sselda Anx|xAn
64 vmacl nΛn
65 63 64 syl Anx|xAΛn
66 65 recnd Anx|xAΛn
67 simprr Anx|xAΛn=0Λn=0
68 1 4 6 9 62 66 67 fsumvma Anx|xAΛn=p1Ak=1ppCntAΛpk
69 elinel2 p1Ap
70 69 ad2antlr Ap1Ak1ppCntAp
71 elfznn k1ppCntAk
72 71 adantl Ap1Ak1ppCntAk
73 vmappw pkΛpk=logp
74 70 72 73 syl2anc Ap1Ak1ppCntAΛpk=logp
75 74 sumeq2dv Ap1Ak=1ppCntAΛpk=k=1ppCntAlogp
76 fzfid Ap1A1ppCntAFin
77 69 22 syl p1Ap
78 77 adantl Ap1Ap
79 78 nnrpd Ap1Ap+
80 79 relogcld Ap1Alogp
81 80 recnd Ap1Alogp
82 fsumconst 1ppCntAFinlogpk=1ppCntAlogp=1ppCntAlogp
83 76 81 82 syl2anc Ap1Ak=1ppCntAlogp=1ppCntAlogp
84 69 11 sylan2 Ap1AppCntA0
85 hashfz1 ppCntA01ppCntA=ppCntA
86 84 85 syl Ap1A1ppCntA=ppCntA
87 86 oveq1d Ap1A1ppCntAlogp=ppCntAlogp
88 75 83 87 3eqtrd Ap1Ak=1ppCntAΛpk=ppCntAlogp
89 88 sumeq2dv Ap1Ak=1ppCntAΛpk=p1AppCntAlogp
90 pclogsum Ap1AppCntAlogp=logA
91 68 89 90 3eqtrd Anx|xAΛn=logA