Metamath Proof Explorer


Theorem vmasum

Description: The sum of the von Mangoldt function over the divisors of n . Equation 9.2.4 of Shapiro, p. 328 and theorem 2.10 in ApostolNT p. 32. (Contributed by Mario Carneiro, 15-Apr-2016)

Ref Expression
Assertion vmasum A n x | x A Λ n = log A

Proof

Step Hyp Ref Expression
1 fveq2 n = p k Λ n = Λ p k
2 dvdsfi A x | x A Fin
3 ssrab2 x | x A
4 3 a1i A x | x A
5 fzfid A 1 A Fin
6 inss1 1 A 1 A
7 ssfi 1 A Fin 1 A 1 A 1 A Fin
8 5 6 7 sylancl A 1 A Fin
9 pccl p A p pCnt A 0
10 9 ancoms A p p pCnt A 0
11 10 nn0zd A p p pCnt A
12 fznn p pCnt A k 1 p pCnt A k k p pCnt A
13 11 12 syl A p k 1 p pCnt A k k p pCnt A
14 13 anbi2d A p p 1 A k 1 p pCnt A p 1 A k k p pCnt A
15 an12 p 1 A k k p pCnt A k p 1 A k p pCnt A
16 prmz p p
17 16 adantl A p p
18 iddvdsexp p k p p k
19 17 18 sylan A p k p p k
20 16 ad2antlr A p k p
21 prmnn p p
22 21 adantl A p p
23 nnnn0 k k 0
24 nnexpcl p k 0 p k
25 22 23 24 syl2an A p k p k
26 25 nnzd A p k p k
27 nnz A A
28 27 ad2antrr A p k A
29 dvdstr p p k A p p k p k A p A
30 20 26 28 29 syl3anc A p k p p k p k A p A
31 19 30 mpand A p k p k A p A
32 simpll A p k A
33 dvdsle p A p A p A
34 20 32 33 syl2anc A p k p A p A
35 31 34 syld A p k p k A p A
36 21 ad2antlr A p k p
37 fznn A p 1 A p p A
38 37 baibd A p p 1 A p A
39 28 36 38 syl2anc A p k p 1 A p A
40 35 39 sylibrd A p k p k A p 1 A
41 40 pm4.71rd A p k p k A p 1 A p k A
42 breq1 x = p k x A p k A
43 42 elrab3 p k p k x | x A p k A
44 25 43 syl A p k p k x | x A p k A
45 simplr A p k p
46 23 adantl A p k k 0
47 pcdvdsb p A k 0 k p pCnt A p k A
48 45 28 46 47 syl3anc A p k k p pCnt A p k A
49 48 anbi2d A p k p 1 A k p pCnt A p 1 A p k A
50 41 44 49 3bitr4rd A p k p 1 A k p pCnt A p k x | x A
51 50 pm5.32da A p k p 1 A k p pCnt A k p k x | x A
52 15 51 bitrid A p p 1 A k k p pCnt A k p k x | x A
53 14 52 bitrd A p p 1 A k 1 p pCnt A k p k x | x A
54 53 pm5.32da A p p 1 A k 1 p pCnt A p k p k x | x A
55 elin p 1 A p 1 A p
56 55 anbi1i p 1 A k 1 p pCnt A p 1 A p k 1 p pCnt A
57 anass p 1 A p k 1 p pCnt A p 1 A p k 1 p pCnt A
58 an12 p 1 A p k 1 p pCnt A p p 1 A k 1 p pCnt A
59 56 57 58 3bitri p 1 A k 1 p pCnt A p p 1 A k 1 p pCnt A
60 anass p k p k x | x A p k p k x | x A
61 54 59 60 3bitr4g A p 1 A k 1 p pCnt A p k p k x | x A
62 4 sselda A n x | x A n
63 vmacl n Λ n
64 62 63 syl A n x | x A Λ n
65 64 recnd A n x | x A Λ n
66 simprr A n x | x A Λ n = 0 Λ n = 0
67 1 2 4 8 61 65 66 fsumvma A n x | x A Λ n = p 1 A k = 1 p pCnt A Λ p k
68 elinel2 p 1 A p
69 68 ad2antlr A p 1 A k 1 p pCnt A p
70 elfznn k 1 p pCnt A k
71 70 adantl A p 1 A k 1 p pCnt A k
72 vmappw p k Λ p k = log p
73 69 71 72 syl2anc A p 1 A k 1 p pCnt A Λ p k = log p
74 73 sumeq2dv A p 1 A k = 1 p pCnt A Λ p k = k = 1 p pCnt A log p
75 fzfid A p 1 A 1 p pCnt A Fin
76 68 21 syl p 1 A p
77 76 adantl A p 1 A p
78 77 nnrpd A p 1 A p +
79 78 relogcld A p 1 A log p
80 79 recnd A p 1 A log p
81 fsumconst 1 p pCnt A Fin log p k = 1 p pCnt A log p = 1 p pCnt A log p
82 75 80 81 syl2anc A p 1 A k = 1 p pCnt A log p = 1 p pCnt A log p
83 68 10 sylan2 A p 1 A p pCnt A 0
84 hashfz1 p pCnt A 0 1 p pCnt A = p pCnt A
85 83 84 syl A p 1 A 1 p pCnt A = p pCnt A
86 85 oveq1d A p 1 A 1 p pCnt A log p = p pCnt A log p
87 74 82 86 3eqtrd A p 1 A k = 1 p pCnt A Λ p k = p pCnt A log p
88 87 sumeq2dv A p 1 A k = 1 p pCnt A Λ p k = p 1 A p pCnt A log p
89 pclogsum A p 1 A p pCnt A log p = log A
90 67 88 89 3eqtrd A n x | x A Λ n = log A