| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flge0nn0 |
|
| 2 |
|
logfac |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
fzfid |
|
| 5 |
|
fzfid |
|
| 6 |
|
ssrab2 |
|
| 7 |
|
ssfi |
|
| 8 |
5 6 7
|
sylancl |
|
| 9 |
|
flcl |
|
| 10 |
9
|
adantr |
|
| 11 |
|
fznn |
|
| 12 |
10 11
|
syl |
|
| 13 |
12
|
anbi1d |
|
| 14 |
|
nnre |
|
| 15 |
14
|
ad2antlr |
|
| 16 |
|
elfznn |
|
| 17 |
16
|
ad2antrl |
|
| 18 |
17
|
nnred |
|
| 19 |
|
reflcl |
|
| 20 |
19
|
ad3antrrr |
|
| 21 |
|
simprr |
|
| 22 |
|
nnz |
|
| 23 |
22
|
ad2antlr |
|
| 24 |
|
dvdsle |
|
| 25 |
23 17 24
|
syl2anc |
|
| 26 |
21 25
|
mpd |
|
| 27 |
|
elfzle2 |
|
| 28 |
27
|
ad2antrl |
|
| 29 |
15 18 20 26 28
|
letrd |
|
| 30 |
29
|
expl |
|
| 31 |
30
|
pm4.71rd |
|
| 32 |
|
an12 |
|
| 33 |
|
an21 |
|
| 34 |
31 32 33
|
3bitr4g |
|
| 35 |
13 34
|
bitr4d |
|
| 36 |
|
breq2 |
|
| 37 |
36
|
elrab |
|
| 38 |
37
|
anbi2i |
|
| 39 |
|
breq1 |
|
| 40 |
39
|
elrab |
|
| 41 |
40
|
anbi2i |
|
| 42 |
35 38 41
|
3bitr4g |
|
| 43 |
|
elfznn |
|
| 44 |
43
|
adantl |
|
| 45 |
|
vmacl |
|
| 46 |
44 45
|
syl |
|
| 47 |
46
|
recnd |
|
| 48 |
47
|
adantrr |
|
| 49 |
4 4 8 42 48
|
fsumcom2 |
|
| 50 |
|
fsumconst |
|
| 51 |
8 47 50
|
syl2anc |
|
| 52 |
|
fzfid |
|
| 53 |
|
simpll |
|
| 54 |
|
eqid |
|
| 55 |
53 44 54
|
dvdsflf1o |
|
| 56 |
52 55
|
hasheqf1od |
|
| 57 |
|
simpl |
|
| 58 |
|
nndivre |
|
| 59 |
57 43 58
|
syl2an |
|
| 60 |
|
nngt0 |
|
| 61 |
14 60
|
jca |
|
| 62 |
43 61
|
syl |
|
| 63 |
|
divge0 |
|
| 64 |
62 63
|
sylan2 |
|
| 65 |
|
flge0nn0 |
|
| 66 |
59 64 65
|
syl2anc |
|
| 67 |
|
hashfz1 |
|
| 68 |
66 67
|
syl |
|
| 69 |
56 68
|
eqtr3d |
|
| 70 |
69
|
oveq1d |
|
| 71 |
59
|
flcld |
|
| 72 |
71
|
zcnd |
|
| 73 |
72 47
|
mulcomd |
|
| 74 |
51 70 73
|
3eqtrd |
|
| 75 |
74
|
sumeq2dv |
|
| 76 |
16
|
adantl |
|
| 77 |
|
vmasum |
|
| 78 |
76 77
|
syl |
|
| 79 |
78
|
sumeq2dv |
|
| 80 |
49 75 79
|
3eqtr3d |
|
| 81 |
3 80
|
eqtr4d |
|