| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumvma.1 |
|
| 2 |
|
fsumvma.2 |
|
| 3 |
|
fsumvma.3 |
|
| 4 |
|
fsumvma.4 |
|
| 5 |
|
fsumvma.5 |
|
| 6 |
|
fsumvma.6 |
|
| 7 |
|
fsumvma.7 |
|
| 8 |
|
fvexd |
|
| 9 |
|
fveq2 |
|
| 10 |
|
df-ov |
|
| 11 |
9 10
|
eqtr4di |
|
| 12 |
11
|
eqeq2d |
|
| 13 |
12
|
biimpa |
|
| 14 |
13 1
|
syl |
|
| 15 |
8 14
|
csbied |
|
| 16 |
2
|
adantr |
|
| 17 |
5
|
biimpd |
|
| 18 |
17
|
impl |
|
| 19 |
18
|
simprd |
|
| 20 |
19
|
ex |
|
| 21 |
18
|
simpld |
|
| 22 |
21
|
simpld |
|
| 23 |
22
|
adantrr |
|
| 24 |
21
|
simprd |
|
| 25 |
24
|
adantrr |
|
| 26 |
24
|
ex |
|
| 27 |
26
|
ssrdv |
|
| 28 |
27
|
sselda |
|
| 29 |
28
|
adantrl |
|
| 30 |
|
eqid |
|
| 31 |
|
prmexpb |
|
| 32 |
31
|
baibd |
|
| 33 |
30 32
|
mpan2 |
|
| 34 |
23 23 25 29 33
|
syl22anc |
|
| 35 |
34
|
ex |
|
| 36 |
20 35
|
dom2lem |
|
| 37 |
|
f1fi |
|
| 38 |
16 36 37
|
syl2anc |
|
| 39 |
1
|
eleq1d |
|
| 40 |
6
|
ralrimiva |
|
| 41 |
40
|
adantr |
|
| 42 |
5
|
simplbda |
|
| 43 |
39 41 42
|
rspcdva |
|
| 44 |
15 4 38 43
|
fsum2d |
|
| 45 |
|
csbeq1a |
|
| 46 |
|
nfcv |
|
| 47 |
|
nfcsb1v |
|
| 48 |
45 46 47
|
cbvsum |
|
| 49 |
|
csbeq1 |
|
| 50 |
|
snfi |
|
| 51 |
|
xpfi |
|
| 52 |
50 38 51
|
sylancr |
|
| 53 |
52
|
ralrimiva |
|
| 54 |
|
iunfi |
|
| 55 |
4 53 54
|
syl2anc |
|
| 56 |
|
fvex |
|
| 57 |
56
|
2a1i |
|
| 58 |
|
eliunxp |
|
| 59 |
5
|
simprbda |
|
| 60 |
|
opelxp |
|
| 61 |
59 60
|
sylibr |
|
| 62 |
|
eleq1 |
|
| 63 |
61 62
|
syl5ibrcom |
|
| 64 |
63
|
impancom |
|
| 65 |
64
|
expimpd |
|
| 66 |
65
|
exlimdvv |
|
| 67 |
58 66
|
biimtrid |
|
| 68 |
67
|
ssrdv |
|
| 69 |
68
|
sseld |
|
| 70 |
67 69
|
anim12d |
|
| 71 |
|
1st2nd2 |
|
| 72 |
71
|
fveq2d |
|
| 73 |
|
df-ov |
|
| 74 |
72 73
|
eqtr4di |
|
| 75 |
|
1st2nd2 |
|
| 76 |
75
|
fveq2d |
|
| 77 |
|
df-ov |
|
| 78 |
76 77
|
eqtr4di |
|
| 79 |
74 78
|
eqeqan12d |
|
| 80 |
|
xp1st |
|
| 81 |
|
xp2nd |
|
| 82 |
80 81
|
jca |
|
| 83 |
|
xp1st |
|
| 84 |
|
xp2nd |
|
| 85 |
83 84
|
jca |
|
| 86 |
|
prmexpb |
|
| 87 |
86
|
an4s |
|
| 88 |
82 85 87
|
syl2an |
|
| 89 |
|
xpopth |
|
| 90 |
79 88 89
|
3bitrd |
|
| 91 |
70 90
|
syl6 |
|
| 92 |
57 91
|
dom2lem |
|
| 93 |
|
f1f1orn |
|
| 94 |
92 93
|
syl |
|
| 95 |
|
fveq2 |
|
| 96 |
|
eqid |
|
| 97 |
|
fvex |
|
| 98 |
95 96 97
|
fvmpt |
|
| 99 |
98
|
adantl |
|
| 100 |
|
fveq2 |
|
| 101 |
100 10
|
eqtr4di |
|
| 102 |
101
|
eleq1d |
|
| 103 |
42 102
|
syl5ibrcom |
|
| 104 |
103
|
impancom |
|
| 105 |
104
|
expimpd |
|
| 106 |
105
|
exlimdvv |
|
| 107 |
58 106
|
biimtrid |
|
| 108 |
107
|
imp |
|
| 109 |
108
|
fmpttd |
|
| 110 |
109
|
frnd |
|
| 111 |
110
|
sselda |
|
| 112 |
47
|
nfel1 |
|
| 113 |
45
|
eleq1d |
|
| 114 |
112 113
|
rspc |
|
| 115 |
40 114
|
mpan9 |
|
| 116 |
111 115
|
syldan |
|
| 117 |
49 55 94 99 116
|
fsumf1o |
|
| 118 |
48 117
|
eqtrid |
|
| 119 |
110
|
sselda |
|
| 120 |
119 6
|
syldan |
|
| 121 |
|
eldif |
|
| 122 |
96 56
|
elrnmpti |
|
| 123 |
101
|
eqeq2d |
|
| 124 |
123
|
rexiunxp |
|
| 125 |
122 124
|
bitri |
|
| 126 |
|
simpr |
|
| 127 |
|
simplr |
|
| 128 |
126 127
|
eqeltrrd |
|
| 129 |
5
|
rbaibd |
|
| 130 |
129
|
adantlr |
|
| 131 |
128 130
|
syldan |
|
| 132 |
131
|
pm5.32da |
|
| 133 |
|
ancom |
|
| 134 |
|
ancom |
|
| 135 |
132 133 134
|
3bitr4g |
|
| 136 |
135
|
2exbidv |
|
| 137 |
|
r2ex |
|
| 138 |
|
r2ex |
|
| 139 |
136 137 138
|
3bitr4g |
|
| 140 |
3
|
sselda |
|
| 141 |
|
isppw2 |
|
| 142 |
140 141
|
syl |
|
| 143 |
139 142
|
bitr4d |
|
| 144 |
125 143
|
bitrid |
|
| 145 |
144
|
necon2bbid |
|
| 146 |
145
|
pm5.32da |
|
| 147 |
7
|
ex |
|
| 148 |
146 147
|
sylbird |
|
| 149 |
121 148
|
biimtrid |
|
| 150 |
149
|
imp |
|
| 151 |
110 120 150 2
|
fsumss |
|
| 152 |
44 118 151
|
3eqtr2rd |
|