Step |
Hyp |
Ref |
Expression |
1 |
|
fsumvma.1 |
|- ( x = ( p ^ k ) -> B = C ) |
2 |
|
fsumvma.2 |
|- ( ph -> A e. Fin ) |
3 |
|
fsumvma.3 |
|- ( ph -> A C_ NN ) |
4 |
|
fsumvma.4 |
|- ( ph -> P e. Fin ) |
5 |
|
fsumvma.5 |
|- ( ph -> ( ( p e. P /\ k e. K ) <-> ( ( p e. Prime /\ k e. NN ) /\ ( p ^ k ) e. A ) ) ) |
6 |
|
fsumvma.6 |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
7 |
|
fsumvma.7 |
|- ( ( ph /\ ( x e. A /\ ( Lam ` x ) = 0 ) ) -> B = 0 ) |
8 |
|
fvexd |
|- ( z = <. p , k >. -> ( ^ ` z ) e. _V ) |
9 |
|
fveq2 |
|- ( z = <. p , k >. -> ( ^ ` z ) = ( ^ ` <. p , k >. ) ) |
10 |
|
df-ov |
|- ( p ^ k ) = ( ^ ` <. p , k >. ) |
11 |
9 10
|
eqtr4di |
|- ( z = <. p , k >. -> ( ^ ` z ) = ( p ^ k ) ) |
12 |
11
|
eqeq2d |
|- ( z = <. p , k >. -> ( x = ( ^ ` z ) <-> x = ( p ^ k ) ) ) |
13 |
12
|
biimpa |
|- ( ( z = <. p , k >. /\ x = ( ^ ` z ) ) -> x = ( p ^ k ) ) |
14 |
13 1
|
syl |
|- ( ( z = <. p , k >. /\ x = ( ^ ` z ) ) -> B = C ) |
15 |
8 14
|
csbied |
|- ( z = <. p , k >. -> [_ ( ^ ` z ) / x ]_ B = C ) |
16 |
2
|
adantr |
|- ( ( ph /\ p e. P ) -> A e. Fin ) |
17 |
5
|
biimpd |
|- ( ph -> ( ( p e. P /\ k e. K ) -> ( ( p e. Prime /\ k e. NN ) /\ ( p ^ k ) e. A ) ) ) |
18 |
17
|
impl |
|- ( ( ( ph /\ p e. P ) /\ k e. K ) -> ( ( p e. Prime /\ k e. NN ) /\ ( p ^ k ) e. A ) ) |
19 |
18
|
simprd |
|- ( ( ( ph /\ p e. P ) /\ k e. K ) -> ( p ^ k ) e. A ) |
20 |
19
|
ex |
|- ( ( ph /\ p e. P ) -> ( k e. K -> ( p ^ k ) e. A ) ) |
21 |
18
|
simpld |
|- ( ( ( ph /\ p e. P ) /\ k e. K ) -> ( p e. Prime /\ k e. NN ) ) |
22 |
21
|
simpld |
|- ( ( ( ph /\ p e. P ) /\ k e. K ) -> p e. Prime ) |
23 |
22
|
adantrr |
|- ( ( ( ph /\ p e. P ) /\ ( k e. K /\ z e. K ) ) -> p e. Prime ) |
24 |
21
|
simprd |
|- ( ( ( ph /\ p e. P ) /\ k e. K ) -> k e. NN ) |
25 |
24
|
adantrr |
|- ( ( ( ph /\ p e. P ) /\ ( k e. K /\ z e. K ) ) -> k e. NN ) |
26 |
24
|
ex |
|- ( ( ph /\ p e. P ) -> ( k e. K -> k e. NN ) ) |
27 |
26
|
ssrdv |
|- ( ( ph /\ p e. P ) -> K C_ NN ) |
28 |
27
|
sselda |
|- ( ( ( ph /\ p e. P ) /\ z e. K ) -> z e. NN ) |
29 |
28
|
adantrl |
|- ( ( ( ph /\ p e. P ) /\ ( k e. K /\ z e. K ) ) -> z e. NN ) |
30 |
|
eqid |
|- p = p |
31 |
|
prmexpb |
|- ( ( ( p e. Prime /\ p e. Prime ) /\ ( k e. NN /\ z e. NN ) ) -> ( ( p ^ k ) = ( p ^ z ) <-> ( p = p /\ k = z ) ) ) |
32 |
31
|
baibd |
|- ( ( ( ( p e. Prime /\ p e. Prime ) /\ ( k e. NN /\ z e. NN ) ) /\ p = p ) -> ( ( p ^ k ) = ( p ^ z ) <-> k = z ) ) |
33 |
30 32
|
mpan2 |
|- ( ( ( p e. Prime /\ p e. Prime ) /\ ( k e. NN /\ z e. NN ) ) -> ( ( p ^ k ) = ( p ^ z ) <-> k = z ) ) |
34 |
23 23 25 29 33
|
syl22anc |
|- ( ( ( ph /\ p e. P ) /\ ( k e. K /\ z e. K ) ) -> ( ( p ^ k ) = ( p ^ z ) <-> k = z ) ) |
35 |
34
|
ex |
|- ( ( ph /\ p e. P ) -> ( ( k e. K /\ z e. K ) -> ( ( p ^ k ) = ( p ^ z ) <-> k = z ) ) ) |
36 |
20 35
|
dom2lem |
|- ( ( ph /\ p e. P ) -> ( k e. K |-> ( p ^ k ) ) : K -1-1-> A ) |
37 |
|
f1fi |
|- ( ( A e. Fin /\ ( k e. K |-> ( p ^ k ) ) : K -1-1-> A ) -> K e. Fin ) |
38 |
16 36 37
|
syl2anc |
|- ( ( ph /\ p e. P ) -> K e. Fin ) |
39 |
1
|
eleq1d |
|- ( x = ( p ^ k ) -> ( B e. CC <-> C e. CC ) ) |
40 |
6
|
ralrimiva |
|- ( ph -> A. x e. A B e. CC ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( p e. P /\ k e. K ) ) -> A. x e. A B e. CC ) |
42 |
5
|
simplbda |
|- ( ( ph /\ ( p e. P /\ k e. K ) ) -> ( p ^ k ) e. A ) |
43 |
39 41 42
|
rspcdva |
|- ( ( ph /\ ( p e. P /\ k e. K ) ) -> C e. CC ) |
44 |
15 4 38 43
|
fsum2d |
|- ( ph -> sum_ p e. P sum_ k e. K C = sum_ z e. U_ p e. P ( { p } X. K ) [_ ( ^ ` z ) / x ]_ B ) |
45 |
|
nfcv |
|- F/_ y B |
46 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
47 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
48 |
45 46 47
|
cbvsumi |
|- sum_ x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) B = sum_ y e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) [_ y / x ]_ B |
49 |
|
csbeq1 |
|- ( y = ( ^ ` z ) -> [_ y / x ]_ B = [_ ( ^ ` z ) / x ]_ B ) |
50 |
|
snfi |
|- { p } e. Fin |
51 |
|
xpfi |
|- ( ( { p } e. Fin /\ K e. Fin ) -> ( { p } X. K ) e. Fin ) |
52 |
50 38 51
|
sylancr |
|- ( ( ph /\ p e. P ) -> ( { p } X. K ) e. Fin ) |
53 |
52
|
ralrimiva |
|- ( ph -> A. p e. P ( { p } X. K ) e. Fin ) |
54 |
|
iunfi |
|- ( ( P e. Fin /\ A. p e. P ( { p } X. K ) e. Fin ) -> U_ p e. P ( { p } X. K ) e. Fin ) |
55 |
4 53 54
|
syl2anc |
|- ( ph -> U_ p e. P ( { p } X. K ) e. Fin ) |
56 |
|
fvex |
|- ( ^ ` a ) e. _V |
57 |
56
|
2a1i |
|- ( ph -> ( a e. U_ p e. P ( { p } X. K ) -> ( ^ ` a ) e. _V ) ) |
58 |
|
eliunxp |
|- ( a e. U_ p e. P ( { p } X. K ) <-> E. p E. k ( a = <. p , k >. /\ ( p e. P /\ k e. K ) ) ) |
59 |
5
|
simprbda |
|- ( ( ph /\ ( p e. P /\ k e. K ) ) -> ( p e. Prime /\ k e. NN ) ) |
60 |
|
opelxp |
|- ( <. p , k >. e. ( Prime X. NN ) <-> ( p e. Prime /\ k e. NN ) ) |
61 |
59 60
|
sylibr |
|- ( ( ph /\ ( p e. P /\ k e. K ) ) -> <. p , k >. e. ( Prime X. NN ) ) |
62 |
|
eleq1 |
|- ( a = <. p , k >. -> ( a e. ( Prime X. NN ) <-> <. p , k >. e. ( Prime X. NN ) ) ) |
63 |
61 62
|
syl5ibrcom |
|- ( ( ph /\ ( p e. P /\ k e. K ) ) -> ( a = <. p , k >. -> a e. ( Prime X. NN ) ) ) |
64 |
63
|
impancom |
|- ( ( ph /\ a = <. p , k >. ) -> ( ( p e. P /\ k e. K ) -> a e. ( Prime X. NN ) ) ) |
65 |
64
|
expimpd |
|- ( ph -> ( ( a = <. p , k >. /\ ( p e. P /\ k e. K ) ) -> a e. ( Prime X. NN ) ) ) |
66 |
65
|
exlimdvv |
|- ( ph -> ( E. p E. k ( a = <. p , k >. /\ ( p e. P /\ k e. K ) ) -> a e. ( Prime X. NN ) ) ) |
67 |
58 66
|
syl5bi |
|- ( ph -> ( a e. U_ p e. P ( { p } X. K ) -> a e. ( Prime X. NN ) ) ) |
68 |
67
|
ssrdv |
|- ( ph -> U_ p e. P ( { p } X. K ) C_ ( Prime X. NN ) ) |
69 |
68
|
sseld |
|- ( ph -> ( b e. U_ p e. P ( { p } X. K ) -> b e. ( Prime X. NN ) ) ) |
70 |
67 69
|
anim12d |
|- ( ph -> ( ( a e. U_ p e. P ( { p } X. K ) /\ b e. U_ p e. P ( { p } X. K ) ) -> ( a e. ( Prime X. NN ) /\ b e. ( Prime X. NN ) ) ) ) |
71 |
|
1st2nd2 |
|- ( a e. ( Prime X. NN ) -> a = <. ( 1st ` a ) , ( 2nd ` a ) >. ) |
72 |
71
|
fveq2d |
|- ( a e. ( Prime X. NN ) -> ( ^ ` a ) = ( ^ ` <. ( 1st ` a ) , ( 2nd ` a ) >. ) ) |
73 |
|
df-ov |
|- ( ( 1st ` a ) ^ ( 2nd ` a ) ) = ( ^ ` <. ( 1st ` a ) , ( 2nd ` a ) >. ) |
74 |
72 73
|
eqtr4di |
|- ( a e. ( Prime X. NN ) -> ( ^ ` a ) = ( ( 1st ` a ) ^ ( 2nd ` a ) ) ) |
75 |
|
1st2nd2 |
|- ( b e. ( Prime X. NN ) -> b = <. ( 1st ` b ) , ( 2nd ` b ) >. ) |
76 |
75
|
fveq2d |
|- ( b e. ( Prime X. NN ) -> ( ^ ` b ) = ( ^ ` <. ( 1st ` b ) , ( 2nd ` b ) >. ) ) |
77 |
|
df-ov |
|- ( ( 1st ` b ) ^ ( 2nd ` b ) ) = ( ^ ` <. ( 1st ` b ) , ( 2nd ` b ) >. ) |
78 |
76 77
|
eqtr4di |
|- ( b e. ( Prime X. NN ) -> ( ^ ` b ) = ( ( 1st ` b ) ^ ( 2nd ` b ) ) ) |
79 |
74 78
|
eqeqan12d |
|- ( ( a e. ( Prime X. NN ) /\ b e. ( Prime X. NN ) ) -> ( ( ^ ` a ) = ( ^ ` b ) <-> ( ( 1st ` a ) ^ ( 2nd ` a ) ) = ( ( 1st ` b ) ^ ( 2nd ` b ) ) ) ) |
80 |
|
xp1st |
|- ( a e. ( Prime X. NN ) -> ( 1st ` a ) e. Prime ) |
81 |
|
xp2nd |
|- ( a e. ( Prime X. NN ) -> ( 2nd ` a ) e. NN ) |
82 |
80 81
|
jca |
|- ( a e. ( Prime X. NN ) -> ( ( 1st ` a ) e. Prime /\ ( 2nd ` a ) e. NN ) ) |
83 |
|
xp1st |
|- ( b e. ( Prime X. NN ) -> ( 1st ` b ) e. Prime ) |
84 |
|
xp2nd |
|- ( b e. ( Prime X. NN ) -> ( 2nd ` b ) e. NN ) |
85 |
83 84
|
jca |
|- ( b e. ( Prime X. NN ) -> ( ( 1st ` b ) e. Prime /\ ( 2nd ` b ) e. NN ) ) |
86 |
|
prmexpb |
|- ( ( ( ( 1st ` a ) e. Prime /\ ( 1st ` b ) e. Prime ) /\ ( ( 2nd ` a ) e. NN /\ ( 2nd ` b ) e. NN ) ) -> ( ( ( 1st ` a ) ^ ( 2nd ` a ) ) = ( ( 1st ` b ) ^ ( 2nd ` b ) ) <-> ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) = ( 2nd ` b ) ) ) ) |
87 |
86
|
an4s |
|- ( ( ( ( 1st ` a ) e. Prime /\ ( 2nd ` a ) e. NN ) /\ ( ( 1st ` b ) e. Prime /\ ( 2nd ` b ) e. NN ) ) -> ( ( ( 1st ` a ) ^ ( 2nd ` a ) ) = ( ( 1st ` b ) ^ ( 2nd ` b ) ) <-> ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) = ( 2nd ` b ) ) ) ) |
88 |
82 85 87
|
syl2an |
|- ( ( a e. ( Prime X. NN ) /\ b e. ( Prime X. NN ) ) -> ( ( ( 1st ` a ) ^ ( 2nd ` a ) ) = ( ( 1st ` b ) ^ ( 2nd ` b ) ) <-> ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) = ( 2nd ` b ) ) ) ) |
89 |
|
xpopth |
|- ( ( a e. ( Prime X. NN ) /\ b e. ( Prime X. NN ) ) -> ( ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) = ( 2nd ` b ) ) <-> a = b ) ) |
90 |
79 88 89
|
3bitrd |
|- ( ( a e. ( Prime X. NN ) /\ b e. ( Prime X. NN ) ) -> ( ( ^ ` a ) = ( ^ ` b ) <-> a = b ) ) |
91 |
70 90
|
syl6 |
|- ( ph -> ( ( a e. U_ p e. P ( { p } X. K ) /\ b e. U_ p e. P ( { p } X. K ) ) -> ( ( ^ ` a ) = ( ^ ` b ) <-> a = b ) ) ) |
92 |
57 91
|
dom2lem |
|- ( ph -> ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) : U_ p e. P ( { p } X. K ) -1-1-> _V ) |
93 |
|
f1f1orn |
|- ( ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) : U_ p e. P ( { p } X. K ) -1-1-> _V -> ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) : U_ p e. P ( { p } X. K ) -1-1-onto-> ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) |
94 |
92 93
|
syl |
|- ( ph -> ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) : U_ p e. P ( { p } X. K ) -1-1-onto-> ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) |
95 |
|
fveq2 |
|- ( a = z -> ( ^ ` a ) = ( ^ ` z ) ) |
96 |
|
eqid |
|- ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) = ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) |
97 |
|
fvex |
|- ( ^ ` z ) e. _V |
98 |
95 96 97
|
fvmpt |
|- ( z e. U_ p e. P ( { p } X. K ) -> ( ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ` z ) = ( ^ ` z ) ) |
99 |
98
|
adantl |
|- ( ( ph /\ z e. U_ p e. P ( { p } X. K ) ) -> ( ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ` z ) = ( ^ ` z ) ) |
100 |
|
fveq2 |
|- ( a = <. p , k >. -> ( ^ ` a ) = ( ^ ` <. p , k >. ) ) |
101 |
100 10
|
eqtr4di |
|- ( a = <. p , k >. -> ( ^ ` a ) = ( p ^ k ) ) |
102 |
101
|
eleq1d |
|- ( a = <. p , k >. -> ( ( ^ ` a ) e. A <-> ( p ^ k ) e. A ) ) |
103 |
42 102
|
syl5ibrcom |
|- ( ( ph /\ ( p e. P /\ k e. K ) ) -> ( a = <. p , k >. -> ( ^ ` a ) e. A ) ) |
104 |
103
|
impancom |
|- ( ( ph /\ a = <. p , k >. ) -> ( ( p e. P /\ k e. K ) -> ( ^ ` a ) e. A ) ) |
105 |
104
|
expimpd |
|- ( ph -> ( ( a = <. p , k >. /\ ( p e. P /\ k e. K ) ) -> ( ^ ` a ) e. A ) ) |
106 |
105
|
exlimdvv |
|- ( ph -> ( E. p E. k ( a = <. p , k >. /\ ( p e. P /\ k e. K ) ) -> ( ^ ` a ) e. A ) ) |
107 |
58 106
|
syl5bi |
|- ( ph -> ( a e. U_ p e. P ( { p } X. K ) -> ( ^ ` a ) e. A ) ) |
108 |
107
|
imp |
|- ( ( ph /\ a e. U_ p e. P ( { p } X. K ) ) -> ( ^ ` a ) e. A ) |
109 |
108
|
fmpttd |
|- ( ph -> ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) : U_ p e. P ( { p } X. K ) --> A ) |
110 |
109
|
frnd |
|- ( ph -> ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) C_ A ) |
111 |
110
|
sselda |
|- ( ( ph /\ y e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) -> y e. A ) |
112 |
46
|
nfel1 |
|- F/ x [_ y / x ]_ B e. CC |
113 |
47
|
eleq1d |
|- ( x = y -> ( B e. CC <-> [_ y / x ]_ B e. CC ) ) |
114 |
112 113
|
rspc |
|- ( y e. A -> ( A. x e. A B e. CC -> [_ y / x ]_ B e. CC ) ) |
115 |
40 114
|
mpan9 |
|- ( ( ph /\ y e. A ) -> [_ y / x ]_ B e. CC ) |
116 |
111 115
|
syldan |
|- ( ( ph /\ y e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) -> [_ y / x ]_ B e. CC ) |
117 |
49 55 94 99 116
|
fsumf1o |
|- ( ph -> sum_ y e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) [_ y / x ]_ B = sum_ z e. U_ p e. P ( { p } X. K ) [_ ( ^ ` z ) / x ]_ B ) |
118 |
48 117
|
eqtrid |
|- ( ph -> sum_ x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) B = sum_ z e. U_ p e. P ( { p } X. K ) [_ ( ^ ` z ) / x ]_ B ) |
119 |
110
|
sselda |
|- ( ( ph /\ x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) -> x e. A ) |
120 |
119 6
|
syldan |
|- ( ( ph /\ x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) -> B e. CC ) |
121 |
|
eldif |
|- ( x e. ( A \ ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) <-> ( x e. A /\ -. x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) ) |
122 |
96 56
|
elrnmpti |
|- ( x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) <-> E. a e. U_ p e. P ( { p } X. K ) x = ( ^ ` a ) ) |
123 |
101
|
eqeq2d |
|- ( a = <. p , k >. -> ( x = ( ^ ` a ) <-> x = ( p ^ k ) ) ) |
124 |
123
|
rexiunxp |
|- ( E. a e. U_ p e. P ( { p } X. K ) x = ( ^ ` a ) <-> E. p e. P E. k e. K x = ( p ^ k ) ) |
125 |
122 124
|
bitri |
|- ( x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) <-> E. p e. P E. k e. K x = ( p ^ k ) ) |
126 |
|
simpr |
|- ( ( ( ph /\ x e. A ) /\ x = ( p ^ k ) ) -> x = ( p ^ k ) ) |
127 |
|
simplr |
|- ( ( ( ph /\ x e. A ) /\ x = ( p ^ k ) ) -> x e. A ) |
128 |
126 127
|
eqeltrrd |
|- ( ( ( ph /\ x e. A ) /\ x = ( p ^ k ) ) -> ( p ^ k ) e. A ) |
129 |
5
|
rbaibd |
|- ( ( ph /\ ( p ^ k ) e. A ) -> ( ( p e. P /\ k e. K ) <-> ( p e. Prime /\ k e. NN ) ) ) |
130 |
129
|
adantlr |
|- ( ( ( ph /\ x e. A ) /\ ( p ^ k ) e. A ) -> ( ( p e. P /\ k e. K ) <-> ( p e. Prime /\ k e. NN ) ) ) |
131 |
128 130
|
syldan |
|- ( ( ( ph /\ x e. A ) /\ x = ( p ^ k ) ) -> ( ( p e. P /\ k e. K ) <-> ( p e. Prime /\ k e. NN ) ) ) |
132 |
131
|
pm5.32da |
|- ( ( ph /\ x e. A ) -> ( ( x = ( p ^ k ) /\ ( p e. P /\ k e. K ) ) <-> ( x = ( p ^ k ) /\ ( p e. Prime /\ k e. NN ) ) ) ) |
133 |
|
ancom |
|- ( ( ( p e. P /\ k e. K ) /\ x = ( p ^ k ) ) <-> ( x = ( p ^ k ) /\ ( p e. P /\ k e. K ) ) ) |
134 |
|
ancom |
|- ( ( ( p e. Prime /\ k e. NN ) /\ x = ( p ^ k ) ) <-> ( x = ( p ^ k ) /\ ( p e. Prime /\ k e. NN ) ) ) |
135 |
132 133 134
|
3bitr4g |
|- ( ( ph /\ x e. A ) -> ( ( ( p e. P /\ k e. K ) /\ x = ( p ^ k ) ) <-> ( ( p e. Prime /\ k e. NN ) /\ x = ( p ^ k ) ) ) ) |
136 |
135
|
2exbidv |
|- ( ( ph /\ x e. A ) -> ( E. p E. k ( ( p e. P /\ k e. K ) /\ x = ( p ^ k ) ) <-> E. p E. k ( ( p e. Prime /\ k e. NN ) /\ x = ( p ^ k ) ) ) ) |
137 |
|
r2ex |
|- ( E. p e. P E. k e. K x = ( p ^ k ) <-> E. p E. k ( ( p e. P /\ k e. K ) /\ x = ( p ^ k ) ) ) |
138 |
|
r2ex |
|- ( E. p e. Prime E. k e. NN x = ( p ^ k ) <-> E. p E. k ( ( p e. Prime /\ k e. NN ) /\ x = ( p ^ k ) ) ) |
139 |
136 137 138
|
3bitr4g |
|- ( ( ph /\ x e. A ) -> ( E. p e. P E. k e. K x = ( p ^ k ) <-> E. p e. Prime E. k e. NN x = ( p ^ k ) ) ) |
140 |
3
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. NN ) |
141 |
|
isppw2 |
|- ( x e. NN -> ( ( Lam ` x ) =/= 0 <-> E. p e. Prime E. k e. NN x = ( p ^ k ) ) ) |
142 |
140 141
|
syl |
|- ( ( ph /\ x e. A ) -> ( ( Lam ` x ) =/= 0 <-> E. p e. Prime E. k e. NN x = ( p ^ k ) ) ) |
143 |
139 142
|
bitr4d |
|- ( ( ph /\ x e. A ) -> ( E. p e. P E. k e. K x = ( p ^ k ) <-> ( Lam ` x ) =/= 0 ) ) |
144 |
125 143
|
syl5bb |
|- ( ( ph /\ x e. A ) -> ( x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) <-> ( Lam ` x ) =/= 0 ) ) |
145 |
144
|
necon2bbid |
|- ( ( ph /\ x e. A ) -> ( ( Lam ` x ) = 0 <-> -. x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) ) |
146 |
145
|
pm5.32da |
|- ( ph -> ( ( x e. A /\ ( Lam ` x ) = 0 ) <-> ( x e. A /\ -. x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) ) ) |
147 |
7
|
ex |
|- ( ph -> ( ( x e. A /\ ( Lam ` x ) = 0 ) -> B = 0 ) ) |
148 |
146 147
|
sylbird |
|- ( ph -> ( ( x e. A /\ -. x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) -> B = 0 ) ) |
149 |
121 148
|
syl5bi |
|- ( ph -> ( x e. ( A \ ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) -> B = 0 ) ) |
150 |
149
|
imp |
|- ( ( ph /\ x e. ( A \ ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) ) ) -> B = 0 ) |
151 |
110 120 150 2
|
fsumss |
|- ( ph -> sum_ x e. ran ( a e. U_ p e. P ( { p } X. K ) |-> ( ^ ` a ) ) B = sum_ x e. A B ) |
152 |
44 118 151
|
3eqtr2rd |
|- ( ph -> sum_ x e. A B = sum_ p e. P sum_ k e. K C ) |