| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 2 |
1
|
adantr |
|- ( ( P e. Prime /\ Q e. Prime ) -> P e. ZZ ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P e. ZZ ) |
| 4 |
|
simp2l |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> M e. NN ) |
| 5 |
|
iddvdsexp |
|- ( ( P e. ZZ /\ M e. NN ) -> P || ( P ^ M ) ) |
| 6 |
3 4 5
|
syl2anc |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P || ( P ^ M ) ) |
| 7 |
|
breq2 |
|- ( ( P ^ M ) = ( Q ^ N ) -> ( P || ( P ^ M ) <-> P || ( Q ^ N ) ) ) |
| 8 |
7
|
3ad2ant3 |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P || ( P ^ M ) <-> P || ( Q ^ N ) ) ) |
| 9 |
|
simp1l |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P e. Prime ) |
| 10 |
|
simp1r |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> Q e. Prime ) |
| 11 |
|
simp2r |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> N e. NN ) |
| 12 |
|
prmdvdsexpb |
|- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |
| 13 |
9 10 11 12
|
syl3anc |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |
| 14 |
8 13
|
bitrd |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P || ( P ^ M ) <-> P = Q ) ) |
| 15 |
6 14
|
mpbid |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P = Q ) |
| 16 |
3
|
zred |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P e. RR ) |
| 17 |
4
|
nnzd |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> M e. ZZ ) |
| 18 |
11
|
nnzd |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> N e. ZZ ) |
| 19 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) ) -> 1 < P ) |
| 21 |
20
|
3adant3 |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> 1 < P ) |
| 22 |
|
simp3 |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P ^ M ) = ( Q ^ N ) ) |
| 23 |
15
|
oveq1d |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P ^ N ) = ( Q ^ N ) ) |
| 24 |
22 23
|
eqtr4d |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P ^ M ) = ( P ^ N ) ) |
| 25 |
16 17 18 21 24
|
expcand |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> M = N ) |
| 26 |
15 25
|
jca |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P = Q /\ M = N ) ) |
| 27 |
26
|
3expia |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) ) -> ( ( P ^ M ) = ( Q ^ N ) -> ( P = Q /\ M = N ) ) ) |
| 28 |
|
oveq12 |
|- ( ( P = Q /\ M = N ) -> ( P ^ M ) = ( Q ^ N ) ) |
| 29 |
27 28
|
impbid1 |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) ) -> ( ( P ^ M ) = ( Q ^ N ) <-> ( P = Q /\ M = N ) ) ) |