| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  𝑃  ∈  ℤ ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑃  ∈  ℤ ) | 
						
							| 4 |  | simp2l | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 5 |  | iddvdsexp | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  𝑃  ∥  ( 𝑃 ↑ 𝑀 ) ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑃  ∥  ( 𝑃 ↑ 𝑀 ) ) | 
						
							| 7 |  | breq2 | ⊢ ( ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 )  →  ( 𝑃  ∥  ( 𝑃 ↑ 𝑀 )  ↔  𝑃  ∥  ( 𝑄 ↑ 𝑁 ) ) ) | 
						
							| 8 | 7 | 3ad2ant3 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  ( 𝑃  ∥  ( 𝑃 ↑ 𝑀 )  ↔  𝑃  ∥  ( 𝑄 ↑ 𝑁 ) ) ) | 
						
							| 9 |  | simp1l | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 10 |  | simp1r | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑄  ∈  ℙ ) | 
						
							| 11 |  | simp2r | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 12 |  | prmdvdsexpb | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃  ∥  ( 𝑄 ↑ 𝑁 )  ↔  𝑃  =  𝑄 ) ) | 
						
							| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  ( 𝑃  ∥  ( 𝑄 ↑ 𝑁 )  ↔  𝑃  =  𝑄 ) ) | 
						
							| 14 | 8 13 | bitrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  ( 𝑃  ∥  ( 𝑃 ↑ 𝑀 )  ↔  𝑃  =  𝑄 ) ) | 
						
							| 15 | 6 14 | mpbid | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑃  =  𝑄 ) | 
						
							| 16 | 3 | zred | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑃  ∈  ℝ ) | 
						
							| 17 | 4 | nnzd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 18 | 11 | nnzd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 19 |  | prmgt1 | ⊢ ( 𝑃  ∈  ℙ  →  1  <  𝑃 ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  1  <  𝑃 ) | 
						
							| 21 | 20 | 3adant3 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  1  <  𝑃 ) | 
						
							| 22 |  | simp3 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) ) | 
						
							| 23 | 15 | oveq1d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  ( 𝑃 ↑ 𝑁 )  =  ( 𝑄 ↑ 𝑁 ) ) | 
						
							| 24 | 22 23 | eqtr4d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  ( 𝑃 ↑ 𝑀 )  =  ( 𝑃 ↑ 𝑁 ) ) | 
						
							| 25 | 16 17 18 21 24 | expcand | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  𝑀  =  𝑁 ) | 
						
							| 26 | 15 25 | jca | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) )  →  ( 𝑃  =  𝑄  ∧  𝑀  =  𝑁 ) ) | 
						
							| 27 | 26 | 3expia | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 )  →  ( 𝑃  =  𝑄  ∧  𝑀  =  𝑁 ) ) ) | 
						
							| 28 |  | oveq12 | ⊢ ( ( 𝑃  =  𝑄  ∧  𝑀  =  𝑁 )  →  ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 ) ) | 
						
							| 29 | 27 28 | impbid1 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  ∧  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝑃 ↑ 𝑀 )  =  ( 𝑄 ↑ 𝑁 )  ↔  ( 𝑃  =  𝑄  ∧  𝑀  =  𝑁 ) ) ) |