Metamath Proof Explorer


Theorem prmexpb

Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012)

Ref Expression
Assertion prmexpb PQMNPM=QNP=QM=N

Proof

Step Hyp Ref Expression
1 prmz PP
2 1 adantr PQP
3 2 3ad2ant1 PQMNPM=QNP
4 simp2l PQMNPM=QNM
5 iddvdsexp PMPPM
6 3 4 5 syl2anc PQMNPM=QNPPM
7 breq2 PM=QNPPMPQN
8 7 3ad2ant3 PQMNPM=QNPPMPQN
9 simp1l PQMNPM=QNP
10 simp1r PQMNPM=QNQ
11 simp2r PQMNPM=QNN
12 prmdvdsexpb PQNPQNP=Q
13 9 10 11 12 syl3anc PQMNPM=QNPQNP=Q
14 8 13 bitrd PQMNPM=QNPPMP=Q
15 6 14 mpbid PQMNPM=QNP=Q
16 3 zred PQMNPM=QNP
17 4 nnzd PQMNPM=QNM
18 11 nnzd PQMNPM=QNN
19 prmgt1 P1<P
20 19 ad2antrr PQMN1<P
21 20 3adant3 PQMNPM=QN1<P
22 simp3 PQMNPM=QNPM=QN
23 15 oveq1d PQMNPM=QNPN=QN
24 22 23 eqtr4d PQMNPM=QNPM=PN
25 16 17 18 21 24 expcand PQMNPM=QNM=N
26 15 25 jca PQMNPM=QNP=QM=N
27 26 3expia PQMNPM=QNP=QM=N
28 oveq12 P=QM=NPM=QN
29 27 28 impbid1 PQMNPM=QNP=QM=N