Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( n = ( p ^ k ) -> ( Lam ` n ) = ( Lam ` ( p ^ k ) ) ) |
2 |
|
fzfid |
|- ( A e. NN -> ( 1 ... A ) e. Fin ) |
3 |
|
dvdsssfz1 |
|- ( A e. NN -> { x e. NN | x || A } C_ ( 1 ... A ) ) |
4 |
2 3
|
ssfid |
|- ( A e. NN -> { x e. NN | x || A } e. Fin ) |
5 |
|
ssrab2 |
|- { x e. NN | x || A } C_ NN |
6 |
5
|
a1i |
|- ( A e. NN -> { x e. NN | x || A } C_ NN ) |
7 |
|
inss1 |
|- ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) |
8 |
|
ssfi |
|- ( ( ( 1 ... A ) e. Fin /\ ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) ) -> ( ( 1 ... A ) i^i Prime ) e. Fin ) |
9 |
2 7 8
|
sylancl |
|- ( A e. NN -> ( ( 1 ... A ) i^i Prime ) e. Fin ) |
10 |
|
pccl |
|- ( ( p e. Prime /\ A e. NN ) -> ( p pCnt A ) e. NN0 ) |
11 |
10
|
ancoms |
|- ( ( A e. NN /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
12 |
11
|
nn0zd |
|- ( ( A e. NN /\ p e. Prime ) -> ( p pCnt A ) e. ZZ ) |
13 |
|
fznn |
|- ( ( p pCnt A ) e. ZZ -> ( k e. ( 1 ... ( p pCnt A ) ) <-> ( k e. NN /\ k <_ ( p pCnt A ) ) ) ) |
14 |
12 13
|
syl |
|- ( ( A e. NN /\ p e. Prime ) -> ( k e. ( 1 ... ( p pCnt A ) ) <-> ( k e. NN /\ k <_ ( p pCnt A ) ) ) ) |
15 |
14
|
anbi2d |
|- ( ( A e. NN /\ p e. Prime ) -> ( ( p e. ( 1 ... A ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( p e. ( 1 ... A ) /\ ( k e. NN /\ k <_ ( p pCnt A ) ) ) ) ) |
16 |
|
an12 |
|- ( ( p e. ( 1 ... A ) /\ ( k e. NN /\ k <_ ( p pCnt A ) ) ) <-> ( k e. NN /\ ( p e. ( 1 ... A ) /\ k <_ ( p pCnt A ) ) ) ) |
17 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
18 |
17
|
adantl |
|- ( ( A e. NN /\ p e. Prime ) -> p e. ZZ ) |
19 |
|
iddvdsexp |
|- ( ( p e. ZZ /\ k e. NN ) -> p || ( p ^ k ) ) |
20 |
18 19
|
sylan |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> p || ( p ^ k ) ) |
21 |
17
|
ad2antlr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> p e. ZZ ) |
22 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
23 |
22
|
adantl |
|- ( ( A e. NN /\ p e. Prime ) -> p e. NN ) |
24 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
25 |
|
nnexpcl |
|- ( ( p e. NN /\ k e. NN0 ) -> ( p ^ k ) e. NN ) |
26 |
23 24 25
|
syl2an |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( p ^ k ) e. NN ) |
27 |
26
|
nnzd |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( p ^ k ) e. ZZ ) |
28 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
29 |
28
|
ad2antrr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> A e. ZZ ) |
30 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( p ^ k ) e. ZZ /\ A e. ZZ ) -> ( ( p || ( p ^ k ) /\ ( p ^ k ) || A ) -> p || A ) ) |
31 |
21 27 29 30
|
syl3anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p || ( p ^ k ) /\ ( p ^ k ) || A ) -> p || A ) ) |
32 |
20 31
|
mpand |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p ^ k ) || A -> p || A ) ) |
33 |
|
simpll |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> A e. NN ) |
34 |
|
dvdsle |
|- ( ( p e. ZZ /\ A e. NN ) -> ( p || A -> p <_ A ) ) |
35 |
21 33 34
|
syl2anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( p || A -> p <_ A ) ) |
36 |
32 35
|
syld |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p ^ k ) || A -> p <_ A ) ) |
37 |
22
|
ad2antlr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> p e. NN ) |
38 |
|
fznn |
|- ( A e. ZZ -> ( p e. ( 1 ... A ) <-> ( p e. NN /\ p <_ A ) ) ) |
39 |
38
|
baibd |
|- ( ( A e. ZZ /\ p e. NN ) -> ( p e. ( 1 ... A ) <-> p <_ A ) ) |
40 |
29 37 39
|
syl2anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( p e. ( 1 ... A ) <-> p <_ A ) ) |
41 |
36 40
|
sylibrd |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p ^ k ) || A -> p e. ( 1 ... A ) ) ) |
42 |
41
|
pm4.71rd |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p ^ k ) || A <-> ( p e. ( 1 ... A ) /\ ( p ^ k ) || A ) ) ) |
43 |
|
breq1 |
|- ( x = ( p ^ k ) -> ( x || A <-> ( p ^ k ) || A ) ) |
44 |
43
|
elrab3 |
|- ( ( p ^ k ) e. NN -> ( ( p ^ k ) e. { x e. NN | x || A } <-> ( p ^ k ) || A ) ) |
45 |
26 44
|
syl |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p ^ k ) e. { x e. NN | x || A } <-> ( p ^ k ) || A ) ) |
46 |
|
simplr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> p e. Prime ) |
47 |
24
|
adantl |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> k e. NN0 ) |
48 |
|
pcdvdsb |
|- ( ( p e. Prime /\ A e. ZZ /\ k e. NN0 ) -> ( k <_ ( p pCnt A ) <-> ( p ^ k ) || A ) ) |
49 |
46 29 47 48
|
syl3anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( k <_ ( p pCnt A ) <-> ( p ^ k ) || A ) ) |
50 |
49
|
anbi2d |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p e. ( 1 ... A ) /\ k <_ ( p pCnt A ) ) <-> ( p e. ( 1 ... A ) /\ ( p ^ k ) || A ) ) ) |
51 |
42 45 50
|
3bitr4rd |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p e. ( 1 ... A ) /\ k <_ ( p pCnt A ) ) <-> ( p ^ k ) e. { x e. NN | x || A } ) ) |
52 |
51
|
pm5.32da |
|- ( ( A e. NN /\ p e. Prime ) -> ( ( k e. NN /\ ( p e. ( 1 ... A ) /\ k <_ ( p pCnt A ) ) ) <-> ( k e. NN /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) |
53 |
16 52
|
syl5bb |
|- ( ( A e. NN /\ p e. Prime ) -> ( ( p e. ( 1 ... A ) /\ ( k e. NN /\ k <_ ( p pCnt A ) ) ) <-> ( k e. NN /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) |
54 |
15 53
|
bitrd |
|- ( ( A e. NN /\ p e. Prime ) -> ( ( p e. ( 1 ... A ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( k e. NN /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) |
55 |
54
|
pm5.32da |
|- ( A e. NN -> ( ( p e. Prime /\ ( p e. ( 1 ... A ) /\ k e. ( 1 ... ( p pCnt A ) ) ) ) <-> ( p e. Prime /\ ( k e. NN /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) ) |
56 |
|
elin |
|- ( p e. ( ( 1 ... A ) i^i Prime ) <-> ( p e. ( 1 ... A ) /\ p e. Prime ) ) |
57 |
56
|
anbi1i |
|- ( ( p e. ( ( 1 ... A ) i^i Prime ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( ( p e. ( 1 ... A ) /\ p e. Prime ) /\ k e. ( 1 ... ( p pCnt A ) ) ) ) |
58 |
|
anass |
|- ( ( ( p e. ( 1 ... A ) /\ p e. Prime ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( p e. ( 1 ... A ) /\ ( p e. Prime /\ k e. ( 1 ... ( p pCnt A ) ) ) ) ) |
59 |
|
an12 |
|- ( ( p e. ( 1 ... A ) /\ ( p e. Prime /\ k e. ( 1 ... ( p pCnt A ) ) ) ) <-> ( p e. Prime /\ ( p e. ( 1 ... A ) /\ k e. ( 1 ... ( p pCnt A ) ) ) ) ) |
60 |
57 58 59
|
3bitri |
|- ( ( p e. ( ( 1 ... A ) i^i Prime ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( p e. Prime /\ ( p e. ( 1 ... A ) /\ k e. ( 1 ... ( p pCnt A ) ) ) ) ) |
61 |
|
anass |
|- ( ( ( p e. Prime /\ k e. NN ) /\ ( p ^ k ) e. { x e. NN | x || A } ) <-> ( p e. Prime /\ ( k e. NN /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) |
62 |
55 60 61
|
3bitr4g |
|- ( A e. NN -> ( ( p e. ( ( 1 ... A ) i^i Prime ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( ( p e. Prime /\ k e. NN ) /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) |
63 |
6
|
sselda |
|- ( ( A e. NN /\ n e. { x e. NN | x || A } ) -> n e. NN ) |
64 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
65 |
63 64
|
syl |
|- ( ( A e. NN /\ n e. { x e. NN | x || A } ) -> ( Lam ` n ) e. RR ) |
66 |
65
|
recnd |
|- ( ( A e. NN /\ n e. { x e. NN | x || A } ) -> ( Lam ` n ) e. CC ) |
67 |
|
simprr |
|- ( ( A e. NN /\ ( n e. { x e. NN | x || A } /\ ( Lam ` n ) = 0 ) ) -> ( Lam ` n ) = 0 ) |
68 |
1 4 6 9 62 66 67
|
fsumvma |
|- ( A e. NN -> sum_ n e. { x e. NN | x || A } ( Lam ` n ) = sum_ p e. ( ( 1 ... A ) i^i Prime ) sum_ k e. ( 1 ... ( p pCnt A ) ) ( Lam ` ( p ^ k ) ) ) |
69 |
|
elinel2 |
|- ( p e. ( ( 1 ... A ) i^i Prime ) -> p e. Prime ) |
70 |
69
|
ad2antlr |
|- ( ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) /\ k e. ( 1 ... ( p pCnt A ) ) ) -> p e. Prime ) |
71 |
|
elfznn |
|- ( k e. ( 1 ... ( p pCnt A ) ) -> k e. NN ) |
72 |
71
|
adantl |
|- ( ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) /\ k e. ( 1 ... ( p pCnt A ) ) ) -> k e. NN ) |
73 |
|
vmappw |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
74 |
70 72 73
|
syl2anc |
|- ( ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) /\ k e. ( 1 ... ( p pCnt A ) ) ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
75 |
74
|
sumeq2dv |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( p pCnt A ) ) ( Lam ` ( p ^ k ) ) = sum_ k e. ( 1 ... ( p pCnt A ) ) ( log ` p ) ) |
76 |
|
fzfid |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( 1 ... ( p pCnt A ) ) e. Fin ) |
77 |
69 22
|
syl |
|- ( p e. ( ( 1 ... A ) i^i Prime ) -> p e. NN ) |
78 |
77
|
adantl |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> p e. NN ) |
79 |
78
|
nnrpd |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> p e. RR+ ) |
80 |
79
|
relogcld |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
81 |
80
|
recnd |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( log ` p ) e. CC ) |
82 |
|
fsumconst |
|- ( ( ( 1 ... ( p pCnt A ) ) e. Fin /\ ( log ` p ) e. CC ) -> sum_ k e. ( 1 ... ( p pCnt A ) ) ( log ` p ) = ( ( # ` ( 1 ... ( p pCnt A ) ) ) x. ( log ` p ) ) ) |
83 |
76 81 82
|
syl2anc |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( p pCnt A ) ) ( log ` p ) = ( ( # ` ( 1 ... ( p pCnt A ) ) ) x. ( log ` p ) ) ) |
84 |
69 11
|
sylan2 |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( p pCnt A ) e. NN0 ) |
85 |
|
hashfz1 |
|- ( ( p pCnt A ) e. NN0 -> ( # ` ( 1 ... ( p pCnt A ) ) ) = ( p pCnt A ) ) |
86 |
84 85
|
syl |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( # ` ( 1 ... ( p pCnt A ) ) ) = ( p pCnt A ) ) |
87 |
86
|
oveq1d |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( ( # ` ( 1 ... ( p pCnt A ) ) ) x. ( log ` p ) ) = ( ( p pCnt A ) x. ( log ` p ) ) ) |
88 |
75 83 87
|
3eqtrd |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( p pCnt A ) ) ( Lam ` ( p ^ k ) ) = ( ( p pCnt A ) x. ( log ` p ) ) ) |
89 |
88
|
sumeq2dv |
|- ( A e. NN -> sum_ p e. ( ( 1 ... A ) i^i Prime ) sum_ k e. ( 1 ... ( p pCnt A ) ) ( Lam ` ( p ^ k ) ) = sum_ p e. ( ( 1 ... A ) i^i Prime ) ( ( p pCnt A ) x. ( log ` p ) ) ) |
90 |
|
pclogsum |
|- ( A e. NN -> sum_ p e. ( ( 1 ... A ) i^i Prime ) ( ( p pCnt A ) x. ( log ` p ) ) = ( log ` A ) ) |
91 |
68 89 90
|
3eqtrd |
|- ( A e. NN -> sum_ n e. { x e. NN | x || A } ( Lam ` n ) = ( log ` A ) ) |