| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( n = ( p ^ k ) -> ( Lam ` n ) = ( Lam ` ( p ^ k ) ) ) |
| 2 |
|
dvdsfi |
|- ( A e. NN -> { x e. NN | x || A } e. Fin ) |
| 3 |
|
ssrab2 |
|- { x e. NN | x || A } C_ NN |
| 4 |
3
|
a1i |
|- ( A e. NN -> { x e. NN | x || A } C_ NN ) |
| 5 |
|
fzfid |
|- ( A e. NN -> ( 1 ... A ) e. Fin ) |
| 6 |
|
inss1 |
|- ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) |
| 7 |
|
ssfi |
|- ( ( ( 1 ... A ) e. Fin /\ ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) ) -> ( ( 1 ... A ) i^i Prime ) e. Fin ) |
| 8 |
5 6 7
|
sylancl |
|- ( A e. NN -> ( ( 1 ... A ) i^i Prime ) e. Fin ) |
| 9 |
|
pccl |
|- ( ( p e. Prime /\ A e. NN ) -> ( p pCnt A ) e. NN0 ) |
| 10 |
9
|
ancoms |
|- ( ( A e. NN /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
| 11 |
10
|
nn0zd |
|- ( ( A e. NN /\ p e. Prime ) -> ( p pCnt A ) e. ZZ ) |
| 12 |
|
fznn |
|- ( ( p pCnt A ) e. ZZ -> ( k e. ( 1 ... ( p pCnt A ) ) <-> ( k e. NN /\ k <_ ( p pCnt A ) ) ) ) |
| 13 |
11 12
|
syl |
|- ( ( A e. NN /\ p e. Prime ) -> ( k e. ( 1 ... ( p pCnt A ) ) <-> ( k e. NN /\ k <_ ( p pCnt A ) ) ) ) |
| 14 |
13
|
anbi2d |
|- ( ( A e. NN /\ p e. Prime ) -> ( ( p e. ( 1 ... A ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( p e. ( 1 ... A ) /\ ( k e. NN /\ k <_ ( p pCnt A ) ) ) ) ) |
| 15 |
|
an12 |
|- ( ( p e. ( 1 ... A ) /\ ( k e. NN /\ k <_ ( p pCnt A ) ) ) <-> ( k e. NN /\ ( p e. ( 1 ... A ) /\ k <_ ( p pCnt A ) ) ) ) |
| 16 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
| 17 |
16
|
adantl |
|- ( ( A e. NN /\ p e. Prime ) -> p e. ZZ ) |
| 18 |
|
iddvdsexp |
|- ( ( p e. ZZ /\ k e. NN ) -> p || ( p ^ k ) ) |
| 19 |
17 18
|
sylan |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> p || ( p ^ k ) ) |
| 20 |
16
|
ad2antlr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> p e. ZZ ) |
| 21 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 22 |
21
|
adantl |
|- ( ( A e. NN /\ p e. Prime ) -> p e. NN ) |
| 23 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 24 |
|
nnexpcl |
|- ( ( p e. NN /\ k e. NN0 ) -> ( p ^ k ) e. NN ) |
| 25 |
22 23 24
|
syl2an |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( p ^ k ) e. NN ) |
| 26 |
25
|
nnzd |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( p ^ k ) e. ZZ ) |
| 27 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 28 |
27
|
ad2antrr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> A e. ZZ ) |
| 29 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( p ^ k ) e. ZZ /\ A e. ZZ ) -> ( ( p || ( p ^ k ) /\ ( p ^ k ) || A ) -> p || A ) ) |
| 30 |
20 26 28 29
|
syl3anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p || ( p ^ k ) /\ ( p ^ k ) || A ) -> p || A ) ) |
| 31 |
19 30
|
mpand |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p ^ k ) || A -> p || A ) ) |
| 32 |
|
simpll |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> A e. NN ) |
| 33 |
|
dvdsle |
|- ( ( p e. ZZ /\ A e. NN ) -> ( p || A -> p <_ A ) ) |
| 34 |
20 32 33
|
syl2anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( p || A -> p <_ A ) ) |
| 35 |
31 34
|
syld |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p ^ k ) || A -> p <_ A ) ) |
| 36 |
21
|
ad2antlr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> p e. NN ) |
| 37 |
|
fznn |
|- ( A e. ZZ -> ( p e. ( 1 ... A ) <-> ( p e. NN /\ p <_ A ) ) ) |
| 38 |
37
|
baibd |
|- ( ( A e. ZZ /\ p e. NN ) -> ( p e. ( 1 ... A ) <-> p <_ A ) ) |
| 39 |
28 36 38
|
syl2anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( p e. ( 1 ... A ) <-> p <_ A ) ) |
| 40 |
35 39
|
sylibrd |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p ^ k ) || A -> p e. ( 1 ... A ) ) ) |
| 41 |
40
|
pm4.71rd |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p ^ k ) || A <-> ( p e. ( 1 ... A ) /\ ( p ^ k ) || A ) ) ) |
| 42 |
|
breq1 |
|- ( x = ( p ^ k ) -> ( x || A <-> ( p ^ k ) || A ) ) |
| 43 |
42
|
elrab3 |
|- ( ( p ^ k ) e. NN -> ( ( p ^ k ) e. { x e. NN | x || A } <-> ( p ^ k ) || A ) ) |
| 44 |
25 43
|
syl |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p ^ k ) e. { x e. NN | x || A } <-> ( p ^ k ) || A ) ) |
| 45 |
|
simplr |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> p e. Prime ) |
| 46 |
23
|
adantl |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> k e. NN0 ) |
| 47 |
|
pcdvdsb |
|- ( ( p e. Prime /\ A e. ZZ /\ k e. NN0 ) -> ( k <_ ( p pCnt A ) <-> ( p ^ k ) || A ) ) |
| 48 |
45 28 46 47
|
syl3anc |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( k <_ ( p pCnt A ) <-> ( p ^ k ) || A ) ) |
| 49 |
48
|
anbi2d |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p e. ( 1 ... A ) /\ k <_ ( p pCnt A ) ) <-> ( p e. ( 1 ... A ) /\ ( p ^ k ) || A ) ) ) |
| 50 |
41 44 49
|
3bitr4rd |
|- ( ( ( A e. NN /\ p e. Prime ) /\ k e. NN ) -> ( ( p e. ( 1 ... A ) /\ k <_ ( p pCnt A ) ) <-> ( p ^ k ) e. { x e. NN | x || A } ) ) |
| 51 |
50
|
pm5.32da |
|- ( ( A e. NN /\ p e. Prime ) -> ( ( k e. NN /\ ( p e. ( 1 ... A ) /\ k <_ ( p pCnt A ) ) ) <-> ( k e. NN /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) |
| 52 |
15 51
|
bitrid |
|- ( ( A e. NN /\ p e. Prime ) -> ( ( p e. ( 1 ... A ) /\ ( k e. NN /\ k <_ ( p pCnt A ) ) ) <-> ( k e. NN /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) |
| 53 |
14 52
|
bitrd |
|- ( ( A e. NN /\ p e. Prime ) -> ( ( p e. ( 1 ... A ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( k e. NN /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) |
| 54 |
53
|
pm5.32da |
|- ( A e. NN -> ( ( p e. Prime /\ ( p e. ( 1 ... A ) /\ k e. ( 1 ... ( p pCnt A ) ) ) ) <-> ( p e. Prime /\ ( k e. NN /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) ) |
| 55 |
|
elin |
|- ( p e. ( ( 1 ... A ) i^i Prime ) <-> ( p e. ( 1 ... A ) /\ p e. Prime ) ) |
| 56 |
55
|
anbi1i |
|- ( ( p e. ( ( 1 ... A ) i^i Prime ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( ( p e. ( 1 ... A ) /\ p e. Prime ) /\ k e. ( 1 ... ( p pCnt A ) ) ) ) |
| 57 |
|
anass |
|- ( ( ( p e. ( 1 ... A ) /\ p e. Prime ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( p e. ( 1 ... A ) /\ ( p e. Prime /\ k e. ( 1 ... ( p pCnt A ) ) ) ) ) |
| 58 |
|
an12 |
|- ( ( p e. ( 1 ... A ) /\ ( p e. Prime /\ k e. ( 1 ... ( p pCnt A ) ) ) ) <-> ( p e. Prime /\ ( p e. ( 1 ... A ) /\ k e. ( 1 ... ( p pCnt A ) ) ) ) ) |
| 59 |
56 57 58
|
3bitri |
|- ( ( p e. ( ( 1 ... A ) i^i Prime ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( p e. Prime /\ ( p e. ( 1 ... A ) /\ k e. ( 1 ... ( p pCnt A ) ) ) ) ) |
| 60 |
|
anass |
|- ( ( ( p e. Prime /\ k e. NN ) /\ ( p ^ k ) e. { x e. NN | x || A } ) <-> ( p e. Prime /\ ( k e. NN /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) |
| 61 |
54 59 60
|
3bitr4g |
|- ( A e. NN -> ( ( p e. ( ( 1 ... A ) i^i Prime ) /\ k e. ( 1 ... ( p pCnt A ) ) ) <-> ( ( p e. Prime /\ k e. NN ) /\ ( p ^ k ) e. { x e. NN | x || A } ) ) ) |
| 62 |
4
|
sselda |
|- ( ( A e. NN /\ n e. { x e. NN | x || A } ) -> n e. NN ) |
| 63 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 64 |
62 63
|
syl |
|- ( ( A e. NN /\ n e. { x e. NN | x || A } ) -> ( Lam ` n ) e. RR ) |
| 65 |
64
|
recnd |
|- ( ( A e. NN /\ n e. { x e. NN | x || A } ) -> ( Lam ` n ) e. CC ) |
| 66 |
|
simprr |
|- ( ( A e. NN /\ ( n e. { x e. NN | x || A } /\ ( Lam ` n ) = 0 ) ) -> ( Lam ` n ) = 0 ) |
| 67 |
1 2 4 8 61 65 66
|
fsumvma |
|- ( A e. NN -> sum_ n e. { x e. NN | x || A } ( Lam ` n ) = sum_ p e. ( ( 1 ... A ) i^i Prime ) sum_ k e. ( 1 ... ( p pCnt A ) ) ( Lam ` ( p ^ k ) ) ) |
| 68 |
|
elinel2 |
|- ( p e. ( ( 1 ... A ) i^i Prime ) -> p e. Prime ) |
| 69 |
68
|
ad2antlr |
|- ( ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) /\ k e. ( 1 ... ( p pCnt A ) ) ) -> p e. Prime ) |
| 70 |
|
elfznn |
|- ( k e. ( 1 ... ( p pCnt A ) ) -> k e. NN ) |
| 71 |
70
|
adantl |
|- ( ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) /\ k e. ( 1 ... ( p pCnt A ) ) ) -> k e. NN ) |
| 72 |
|
vmappw |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
| 73 |
69 71 72
|
syl2anc |
|- ( ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) /\ k e. ( 1 ... ( p pCnt A ) ) ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
| 74 |
73
|
sumeq2dv |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( p pCnt A ) ) ( Lam ` ( p ^ k ) ) = sum_ k e. ( 1 ... ( p pCnt A ) ) ( log ` p ) ) |
| 75 |
|
fzfid |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( 1 ... ( p pCnt A ) ) e. Fin ) |
| 76 |
68 21
|
syl |
|- ( p e. ( ( 1 ... A ) i^i Prime ) -> p e. NN ) |
| 77 |
76
|
adantl |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> p e. NN ) |
| 78 |
77
|
nnrpd |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> p e. RR+ ) |
| 79 |
78
|
relogcld |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
| 80 |
79
|
recnd |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( log ` p ) e. CC ) |
| 81 |
|
fsumconst |
|- ( ( ( 1 ... ( p pCnt A ) ) e. Fin /\ ( log ` p ) e. CC ) -> sum_ k e. ( 1 ... ( p pCnt A ) ) ( log ` p ) = ( ( # ` ( 1 ... ( p pCnt A ) ) ) x. ( log ` p ) ) ) |
| 82 |
75 80 81
|
syl2anc |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( p pCnt A ) ) ( log ` p ) = ( ( # ` ( 1 ... ( p pCnt A ) ) ) x. ( log ` p ) ) ) |
| 83 |
68 10
|
sylan2 |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( p pCnt A ) e. NN0 ) |
| 84 |
|
hashfz1 |
|- ( ( p pCnt A ) e. NN0 -> ( # ` ( 1 ... ( p pCnt A ) ) ) = ( p pCnt A ) ) |
| 85 |
83 84
|
syl |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( # ` ( 1 ... ( p pCnt A ) ) ) = ( p pCnt A ) ) |
| 86 |
85
|
oveq1d |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( ( # ` ( 1 ... ( p pCnt A ) ) ) x. ( log ` p ) ) = ( ( p pCnt A ) x. ( log ` p ) ) ) |
| 87 |
74 82 86
|
3eqtrd |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( p pCnt A ) ) ( Lam ` ( p ^ k ) ) = ( ( p pCnt A ) x. ( log ` p ) ) ) |
| 88 |
87
|
sumeq2dv |
|- ( A e. NN -> sum_ p e. ( ( 1 ... A ) i^i Prime ) sum_ k e. ( 1 ... ( p pCnt A ) ) ( Lam ` ( p ^ k ) ) = sum_ p e. ( ( 1 ... A ) i^i Prime ) ( ( p pCnt A ) x. ( log ` p ) ) ) |
| 89 |
|
pclogsum |
|- ( A e. NN -> sum_ p e. ( ( 1 ... A ) i^i Prime ) ( ( p pCnt A ) x. ( log ` p ) ) = ( log ` A ) ) |
| 90 |
67 88 89
|
3eqtrd |
|- ( A e. NN -> sum_ n e. { x e. NN | x || A } ( Lam ` n ) = ( log ` A ) ) |