| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvoveq1 |  |-  ( n = ( d x. m ) -> ( log ` ( n / d ) ) = ( log ` ( ( d x. m ) / d ) ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( n = ( d x. m ) -> ( ( log ` ( n / d ) ) ^ 2 ) = ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( n = ( d x. m ) -> ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) ) | 
						
							| 4 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 5 |  | ssrab2 |  |-  { y e. NN | y || n } C_ NN | 
						
							| 6 |  | simprr |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. { y e. NN | y || n } ) | 
						
							| 7 | 5 6 | sselid |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. NN ) | 
						
							| 8 |  | mucl |  |-  ( d e. NN -> ( mmu ` d ) e. ZZ ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( mmu ` d ) e. ZZ ) | 
						
							| 10 | 9 | zcnd |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( mmu ` d ) e. CC ) | 
						
							| 11 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 12 | 11 | nnrpd |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) | 
						
							| 13 | 12 | ad2antrl |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> n e. RR+ ) | 
						
							| 14 | 7 | nnrpd |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. RR+ ) | 
						
							| 15 | 13 14 | rpdivcld |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( n / d ) e. RR+ ) | 
						
							| 16 |  | relogcl |  |-  ( ( n / d ) e. RR+ -> ( log ` ( n / d ) ) e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( ( n / d ) e. RR+ -> ( log ` ( n / d ) ) e. CC ) | 
						
							| 18 | 15 17 | syl |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( log ` ( n / d ) ) e. CC ) | 
						
							| 19 | 18 | sqcld |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( ( log ` ( n / d ) ) ^ 2 ) e. CC ) | 
						
							| 20 | 10 19 | mulcld |  |-  ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) e. CC ) | 
						
							| 21 | 3 4 20 | dvdsflsumcom |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) ) | 
						
							| 22 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` ( x / d ) ) ) -> m e. NN ) | 
						
							| 23 | 22 | 3ad2ant3 |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> m e. NN ) | 
						
							| 24 | 23 | nncnd |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> m e. CC ) | 
						
							| 25 |  | elfznn |  |-  ( d e. ( 1 ... ( |_ ` x ) ) -> d e. NN ) | 
						
							| 26 | 25 | 3ad2ant2 |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d e. NN ) | 
						
							| 27 | 26 | nncnd |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d e. CC ) | 
						
							| 28 | 26 | nnne0d |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d =/= 0 ) | 
						
							| 29 | 24 27 28 | divcan3d |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( d x. m ) / d ) = m ) | 
						
							| 30 | 29 | fveq2d |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( log ` ( ( d x. m ) / d ) ) = ( log ` m ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) = ( ( log ` m ) ^ 2 ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) | 
						
							| 33 | 32 | 2sumeq2dv |  |-  ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) | 
						
							| 34 | 21 33 | eqtrd |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) | 
						
							| 35 | 34 | oveq1d |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) / x ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) ) | 
						
							| 36 | 35 | oveq1d |  |-  ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 37 | 36 | mpteq2ia |  |-  ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 38 |  | eqid |  |-  ( ( ( ( log ` ( x / d ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / d ) ) ) ) ) / d ) = ( ( ( ( log ` ( x / d ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / d ) ) ) ) ) / d ) | 
						
							| 39 | 38 | selberglem2 |  |-  ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) | 
						
							| 40 | 37 39 | eqeltri |  |-  ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |