Step |
Hyp |
Ref |
Expression |
1 |
|
fvoveq1 |
|- ( n = ( d x. m ) -> ( log ` ( n / d ) ) = ( log ` ( ( d x. m ) / d ) ) ) |
2 |
1
|
oveq1d |
|- ( n = ( d x. m ) -> ( ( log ` ( n / d ) ) ^ 2 ) = ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) |
3 |
2
|
oveq2d |
|- ( n = ( d x. m ) -> ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) ) |
4 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
5 |
|
ssrab2 |
|- { y e. NN | y || n } C_ NN |
6 |
|
simprr |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. { y e. NN | y || n } ) |
7 |
5 6
|
sselid |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. NN ) |
8 |
|
mucl |
|- ( d e. NN -> ( mmu ` d ) e. ZZ ) |
9 |
7 8
|
syl |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( mmu ` d ) e. ZZ ) |
10 |
9
|
zcnd |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( mmu ` d ) e. CC ) |
11 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
12 |
11
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
13 |
12
|
ad2antrl |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> n e. RR+ ) |
14 |
7
|
nnrpd |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> d e. RR+ ) |
15 |
13 14
|
rpdivcld |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( n / d ) e. RR+ ) |
16 |
|
relogcl |
|- ( ( n / d ) e. RR+ -> ( log ` ( n / d ) ) e. RR ) |
17 |
16
|
recnd |
|- ( ( n / d ) e. RR+ -> ( log ` ( n / d ) ) e. CC ) |
18 |
15 17
|
syl |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( log ` ( n / d ) ) e. CC ) |
19 |
18
|
sqcld |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( ( log ` ( n / d ) ) ^ 2 ) e. CC ) |
20 |
10 19
|
mulcld |
|- ( ( x e. RR+ /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ d e. { y e. NN | y || n } ) ) -> ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) e. CC ) |
21 |
3 4 20
|
dvdsflsumcom |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) ) |
22 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / d ) ) ) -> m e. NN ) |
23 |
22
|
3ad2ant3 |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> m e. NN ) |
24 |
23
|
nncnd |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> m e. CC ) |
25 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. NN ) |
26 |
25
|
3ad2ant2 |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d e. NN ) |
27 |
26
|
nncnd |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d e. CC ) |
28 |
26
|
nnne0d |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> d =/= 0 ) |
29 |
24 27 28
|
divcan3d |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( d x. m ) / d ) = m ) |
30 |
29
|
fveq2d |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( log ` ( ( d x. m ) / d ) ) = ( log ` m ) ) |
31 |
30
|
oveq1d |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) = ( ( log ` m ) ^ 2 ) ) |
32 |
31
|
oveq2d |
|- ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) /\ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) = ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) |
33 |
32
|
2sumeq2dv |
|- ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` ( ( d x. m ) / d ) ) ^ 2 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) |
34 |
21 33
|
eqtrd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) ) |
35 |
34
|
oveq1d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) / x ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) ) |
36 |
35
|
oveq1d |
|- ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
37 |
36
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) |
38 |
|
eqid |
|- ( ( ( ( log ` ( x / d ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / d ) ) ) ) ) / d ) = ( ( ( ( log ` ( x / d ) ) ^ 2 ) + ( 2 - ( 2 x. ( log ` ( x / d ) ) ) ) ) / d ) |
39 |
38
|
selberglem2 |
|- ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( mmu ` d ) x. ( ( log ` m ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
40 |
37 39
|
eqeltri |
|- ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ d e. { y e. NN | y || n } ( ( mmu ` d ) x. ( ( log ` ( n / d ) ) ^ 2 ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |