| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 2 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 3 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 4 |
3
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
| 5 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 6 |
2 4 5
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 7 |
6
|
relogcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 9 |
7 8
|
reexpcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ∈ ℝ ) |
| 10 |
1 9
|
fsumrecl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ∈ ℝ ) |
| 11 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 12 |
|
id |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) |
| 13 |
|
reexpcl |
⊢ ( ( ( log ‘ 𝑥 ) ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℝ ) |
| 14 |
11 12 13
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℝ ) |
| 15 |
|
faccl |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 17 |
16
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ! ‘ 𝑁 ) ∈ ℝ ) |
| 18 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( 0 ... 𝑁 ) ∈ Fin ) |
| 19 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 20 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 21 |
|
reexpcl |
⊢ ( ( ( log ‘ 𝑥 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( log ‘ 𝑥 ) ↑ 𝑘 ) ∈ ℝ ) |
| 22 |
19 20 21
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( log ‘ 𝑥 ) ↑ 𝑘 ) ∈ ℝ ) |
| 23 |
20
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 24 |
23
|
faccld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 25 |
22 24
|
nndivred |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 26 |
18 25
|
fsumrecl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 27 |
17 26
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 28 |
14 27
|
resubcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ∈ ℝ ) |
| 29 |
10 28
|
resubcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ∈ ℝ ) |
| 30 |
29 2
|
rerpdivcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) ∈ ℝ ) |
| 31 |
|
rerpdivcl |
⊢ ( ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ∈ ℝ ) |
| 32 |
28 31
|
sylancom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ∈ ℝ ) |
| 33 |
|
1red |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℝ ) |
| 34 |
15
|
nncnd |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 35 |
|
simpl |
⊢ ( ( 𝑘 = 𝑁 ∧ 𝑥 ∈ ℝ+ ) → 𝑘 = 𝑁 ) |
| 36 |
35
|
oveq2d |
⊢ ( ( 𝑘 = 𝑁 ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) ↑ 𝑘 ) = ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 37 |
36
|
oveq1d |
⊢ ( ( 𝑘 = 𝑁 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) = ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) |
| 38 |
37
|
mpteq2dva |
⊢ ( 𝑘 = 𝑁 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) ) |
| 39 |
38
|
breq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) ) ⇝𝑟 0 ↔ ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) ⇝𝑟 0 ) ) |
| 40 |
11
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 41 |
|
id |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℕ0 ) |
| 42 |
|
cxpexp |
⊢ ( ( ( log ‘ 𝑥 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( log ‘ 𝑥 ) ↑𝑐 𝑘 ) = ( ( log ‘ 𝑥 ) ↑ 𝑘 ) ) |
| 43 |
40 41 42
|
syl2anr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) ↑𝑐 𝑘 ) = ( ( log ‘ 𝑥 ) ↑ 𝑘 ) ) |
| 44 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 46 |
45
|
cxp1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑𝑐 1 ) = 𝑥 ) |
| 47 |
43 46
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑𝑐 𝑘 ) / ( 𝑥 ↑𝑐 1 ) ) = ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) ) |
| 48 |
47
|
mpteq2dva |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑𝑐 𝑘 ) / ( 𝑥 ↑𝑐 1 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) ) ) |
| 49 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 50 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 51 |
|
cxploglim2 |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑𝑐 𝑘 ) / ( 𝑥 ↑𝑐 1 ) ) ) ⇝𝑟 0 ) |
| 52 |
49 50 51
|
sylancl |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑𝑐 𝑘 ) / ( 𝑥 ↑𝑐 1 ) ) ) ⇝𝑟 0 ) |
| 53 |
48 52
|
eqbrtrrd |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) ) ⇝𝑟 0 ) |
| 54 |
39 53
|
vtoclga |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) ⇝𝑟 0 ) |
| 55 |
|
rerpdivcl |
⊢ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ∈ ℝ ) |
| 56 |
14 55
|
sylancom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ∈ ℝ ) |
| 57 |
56
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ∈ ℂ ) |
| 58 |
10
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ∈ ℂ ) |
| 59 |
14
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℂ ) |
| 60 |
34
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 61 |
26
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 62 |
60 61
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 63 |
59 62
|
subcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ∈ ℂ ) |
| 64 |
58 63
|
subcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ∈ ℂ ) |
| 65 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 67 |
66
|
simpld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 68 |
66
|
simprd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 69 |
64 67 68
|
divcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) ∈ ℂ ) |
| 70 |
69
|
adantrr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) ∈ ℂ ) |
| 71 |
15
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 72 |
71
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 73 |
70 72
|
subcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ∈ ℂ ) |
| 74 |
73
|
abscld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) ∈ ℝ ) |
| 75 |
56
|
adantrr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ∈ ℝ ) |
| 76 |
75
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ∈ ℂ ) |
| 77 |
76
|
abscld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) ∈ ℝ ) |
| 78 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 79 |
78
|
eqcomi |
⊢ ℝ+ = ( 0 (,) +∞ ) |
| 80 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 81 |
|
1z |
⊢ 1 ∈ ℤ |
| 82 |
81
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ∈ ℤ ) |
| 83 |
|
1red |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ∈ ℝ ) |
| 84 |
|
1re |
⊢ 1 ∈ ℝ |
| 85 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 86 |
84 85
|
nn0addge1i |
⊢ 1 ≤ ( 1 + 1 ) |
| 87 |
86
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ≤ ( 1 + 1 ) ) |
| 88 |
|
0red |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 0 ∈ ℝ ) |
| 89 |
71
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 90 |
89
|
nnred |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ! ‘ 𝑁 ) ∈ ℝ ) |
| 91 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
| 92 |
91
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ ) |
| 93 |
|
fzfid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 0 ... 𝑁 ) ∈ Fin ) |
| 94 |
|
simprl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ+ ) |
| 95 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 / 𝑦 ) ∈ ℝ+ ) |
| 96 |
94 95
|
sylan |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 / 𝑦 ) ∈ ℝ+ ) |
| 97 |
96
|
relogcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( log ‘ ( 𝑥 / 𝑦 ) ) ∈ ℝ ) |
| 98 |
|
reexpcl |
⊢ ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) ∈ ℝ ) |
| 99 |
97 20 98
|
syl2an |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) ∈ ℝ ) |
| 100 |
20
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 101 |
100
|
faccld |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 102 |
99 101
|
nndivred |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 103 |
93 102
|
fsumrecl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 104 |
92 103
|
remulcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 105 |
90 104
|
remulcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ∈ ℝ ) |
| 106 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → 𝑁 ∈ ℕ0 ) |
| 107 |
97 106
|
reexpcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) ∈ ℝ ) |
| 108 |
|
nnrp |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ+ ) |
| 109 |
108 107
|
sylan2 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) ∈ ℝ ) |
| 110 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 111 |
110
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 112 |
104
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 113 |
107 89
|
nndivred |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) / ( ! ‘ 𝑁 ) ) ∈ ℝ ) |
| 114 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑁 ∈ ℕ0 ) |
| 115 |
|
advlogexp |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0 ) → ( ℝ D ( 𝑦 ∈ ℝ+ ↦ ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) / ( ! ‘ 𝑁 ) ) ) ) |
| 116 |
94 114 115
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ℝ D ( 𝑦 ∈ ℝ+ ↦ ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) / ( ! ‘ 𝑁 ) ) ) ) |
| 117 |
111 112 113 116 72
|
dvmptcmul |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ℝ D ( 𝑦 ∈ ℝ+ ↦ ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( ( ! ‘ 𝑁 ) · ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) / ( ! ‘ 𝑁 ) ) ) ) ) |
| 118 |
107
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) ∈ ℂ ) |
| 119 |
72
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 120 |
71
|
nnne0d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ! ‘ 𝑁 ) ≠ 0 ) |
| 121 |
120
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ! ‘ 𝑁 ) ≠ 0 ) |
| 122 |
118 119 121
|
divcan2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → ( ( ! ‘ 𝑁 ) · ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) / ( ! ‘ 𝑁 ) ) ) = ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) ) |
| 123 |
122
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑦 ∈ ℝ+ ↦ ( ( ! ‘ 𝑁 ) · ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) / ( ! ‘ 𝑁 ) ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) ) ) |
| 124 |
117 123
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ℝ D ( 𝑦 ∈ ℝ+ ↦ ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) ) ) |
| 125 |
|
oveq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝑥 / 𝑦 ) = ( 𝑥 / 𝑛 ) ) |
| 126 |
125
|
fveq2d |
⊢ ( 𝑦 = 𝑛 → ( log ‘ ( 𝑥 / 𝑦 ) ) = ( log ‘ ( 𝑥 / 𝑛 ) ) ) |
| 127 |
126
|
oveq1d |
⊢ ( 𝑦 = 𝑛 → ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) = ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ) |
| 128 |
94
|
rpxrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ* ) |
| 129 |
|
simp1rl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ+ ) |
| 130 |
|
simp2r |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
| 131 |
129 130
|
rpdivcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 132 |
131
|
relogcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 133 |
|
simp2l |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑦 ∈ ℝ+ ) |
| 134 |
129 133
|
rpdivcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝑥 / 𝑦 ) ∈ ℝ+ ) |
| 135 |
134
|
relogcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( log ‘ ( 𝑥 / 𝑦 ) ) ∈ ℝ ) |
| 136 |
|
simp1l |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑁 ∈ ℕ0 ) |
| 137 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 138 |
130
|
rpcnd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑛 ∈ ℂ ) |
| 139 |
138
|
mullidd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 1 · 𝑛 ) = 𝑛 ) |
| 140 |
|
simp33 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑛 ≤ 𝑥 ) |
| 141 |
139 140
|
eqbrtrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 1 · 𝑛 ) ≤ 𝑥 ) |
| 142 |
|
1red |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 1 ∈ ℝ ) |
| 143 |
129
|
rpred |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 144 |
142 143 130
|
lemuldivd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( ( 1 · 𝑛 ) ≤ 𝑥 ↔ 1 ≤ ( 𝑥 / 𝑛 ) ) ) |
| 145 |
141 144
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 1 ≤ ( 𝑥 / 𝑛 ) ) |
| 146 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ ( 𝑥 / 𝑛 ) ∈ ℝ+ ) → ( 1 ≤ ( 𝑥 / 𝑛 ) ↔ ( log ‘ 1 ) ≤ ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) |
| 147 |
50 131 146
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 1 ≤ ( 𝑥 / 𝑛 ) ↔ ( log ‘ 1 ) ≤ ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) |
| 148 |
145 147
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( log ‘ 1 ) ≤ ( log ‘ ( 𝑥 / 𝑛 ) ) ) |
| 149 |
137 148
|
eqbrtrrid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 0 ≤ ( log ‘ ( 𝑥 / 𝑛 ) ) ) |
| 150 |
|
simp32 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑦 ≤ 𝑛 ) |
| 151 |
133 130 129
|
lediv2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝑦 ≤ 𝑛 ↔ ( 𝑥 / 𝑛 ) ≤ ( 𝑥 / 𝑦 ) ) ) |
| 152 |
150 151
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝑥 / 𝑛 ) ≤ ( 𝑥 / 𝑦 ) ) |
| 153 |
131 134
|
logled |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( ( 𝑥 / 𝑛 ) ≤ ( 𝑥 / 𝑦 ) ↔ ( log ‘ ( 𝑥 / 𝑛 ) ) ≤ ( log ‘ ( 𝑥 / 𝑦 ) ) ) ) |
| 154 |
152 153
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ≤ ( log ‘ ( 𝑥 / 𝑦 ) ) ) |
| 155 |
|
leexp1a |
⊢ ( ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ∧ ( log ‘ ( 𝑥 / 𝑦 ) ) ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ ( log ‘ ( 𝑥 / 𝑛 ) ) ∧ ( log ‘ ( 𝑥 / 𝑛 ) ) ≤ ( log ‘ ( 𝑥 / 𝑦 ) ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ≤ ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) ) |
| 156 |
132 135 136 149 154 155
|
syl32anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ≤ ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) ) |
| 157 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) |
| 158 |
96
|
3ad2antr1 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( 𝑥 / 𝑦 ) ∈ ℝ+ ) |
| 159 |
158
|
relogcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( log ‘ ( 𝑥 / 𝑦 ) ) ∈ ℝ ) |
| 160 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 𝑁 ∈ ℕ0 ) |
| 161 |
|
rpcn |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℂ ) |
| 162 |
161
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℂ ) |
| 163 |
162
|
3ad2antr1 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 𝑦 ∈ ℂ ) |
| 164 |
163
|
mullidd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( 1 · 𝑦 ) = 𝑦 ) |
| 165 |
|
simpr3 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 𝑦 ≤ 𝑥 ) |
| 166 |
164 165
|
eqbrtrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( 1 · 𝑦 ) ≤ 𝑥 ) |
| 167 |
|
1red |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 1 ∈ ℝ ) |
| 168 |
94
|
rpred |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 169 |
168
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 170 |
|
simpr1 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 𝑦 ∈ ℝ+ ) |
| 171 |
167 169 170
|
lemuldivd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( ( 1 · 𝑦 ) ≤ 𝑥 ↔ 1 ≤ ( 𝑥 / 𝑦 ) ) ) |
| 172 |
166 171
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 1 ≤ ( 𝑥 / 𝑦 ) ) |
| 173 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ ( 𝑥 / 𝑦 ) ∈ ℝ+ ) → ( 1 ≤ ( 𝑥 / 𝑦 ) ↔ ( log ‘ 1 ) ≤ ( log ‘ ( 𝑥 / 𝑦 ) ) ) ) |
| 174 |
50 158 173
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( 1 ≤ ( 𝑥 / 𝑦 ) ↔ ( log ‘ 1 ) ≤ ( log ‘ ( 𝑥 / 𝑦 ) ) ) ) |
| 175 |
172 174
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → ( log ‘ 1 ) ≤ ( log ‘ ( 𝑥 / 𝑦 ) ) ) |
| 176 |
137 175
|
eqbrtrrid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 0 ≤ ( log ‘ ( 𝑥 / 𝑦 ) ) ) |
| 177 |
159 160 176
|
expge0d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) → 0 ≤ ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) ) |
| 178 |
50
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ∈ ℝ+ ) |
| 179 |
|
1le1 |
⊢ 1 ≤ 1 |
| 180 |
179
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ≤ 1 ) |
| 181 |
|
simprr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ≤ 𝑥 ) |
| 182 |
168
|
leidd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ≤ 𝑥 ) |
| 183 |
79 80 82 83 87 88 105 107 109 124 127 128 156 157 177 178 94 180 181 182
|
dvfsumlem4 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 1 ) ) ) ≤ ⦋ 1 / 𝑦 ⦌ ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) ) |
| 184 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 185 |
94 4 5
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 186 |
185
|
relogcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 187 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 188 |
186 187
|
reexpcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ∈ ℝ ) |
| 189 |
184 188
|
fsumrecl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ∈ ℝ ) |
| 190 |
189
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ∈ ℂ ) |
| 191 |
94
|
rpcnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 192 |
72 191
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ! ‘ 𝑁 ) · 𝑥 ) ∈ ℂ ) |
| 193 |
11
|
ad2antrl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 194 |
193
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 195 |
194 114
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℂ ) |
| 196 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 0 ... 𝑁 ) ∈ Fin ) |
| 197 |
193 20 21
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( log ‘ 𝑥 ) ↑ 𝑘 ) ∈ ℝ ) |
| 198 |
20
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 199 |
198
|
faccld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 200 |
197 199
|
nndivred |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 201 |
200
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 202 |
196 201
|
fsumcl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 203 |
72 202
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 204 |
195 203
|
subcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ∈ ℂ ) |
| 205 |
190 192 204
|
sub32d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · 𝑥 ) ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) − ( ( ! ‘ 𝑁 ) · 𝑥 ) ) ) |
| 206 |
|
eqidd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ) |
| 207 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
| 208 |
207
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ 𝑦 ) = ( ⌊ ‘ 𝑥 ) ) |
| 209 |
208
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → ( 1 ... ( ⌊ ‘ 𝑦 ) ) = ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 210 |
209
|
sumeq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ) |
| 211 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 / 𝑦 ) = ( 𝑥 / 𝑥 ) ) |
| 212 |
65
|
ad2antrl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 213 |
|
divid |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 𝑥 / 𝑥 ) = 1 ) |
| 214 |
212 213
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 / 𝑥 ) = 1 ) |
| 215 |
211 214
|
sylan9eqr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → ( 𝑥 / 𝑦 ) = 1 ) |
| 216 |
215
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 / 𝑦 ) = 1 ) |
| 217 |
216
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( log ‘ ( 𝑥 / 𝑦 ) ) = ( log ‘ 1 ) ) |
| 218 |
217 137
|
eqtrdi |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( log ‘ ( 𝑥 / 𝑦 ) ) = 0 ) |
| 219 |
218
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
| 220 |
219
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 221 |
220
|
sumeq2dv |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 222 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 223 |
114 222
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 224 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
| 225 |
223 224
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 0 ∈ ( 0 ... 𝑁 ) ) |
| 226 |
225
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
| 227 |
226
|
snssd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → { 0 } ⊆ ( 0 ... 𝑁 ) ) |
| 228 |
|
elsni |
⊢ ( 𝑘 ∈ { 0 } → 𝑘 = 0 ) |
| 229 |
228
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ { 0 } ) → 𝑘 = 0 ) |
| 230 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 ↑ 𝑘 ) = ( 0 ↑ 0 ) ) |
| 231 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
| 232 |
230 231
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 ↑ 𝑘 ) = 1 ) |
| 233 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ! ‘ 𝑘 ) = ( ! ‘ 0 ) ) |
| 234 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 235 |
233 234
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( ! ‘ 𝑘 ) = 1 ) |
| 236 |
232 235
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( 1 / 1 ) ) |
| 237 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 238 |
236 237
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 ) |
| 239 |
229 238
|
syl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ { 0 } ) → ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 ) |
| 240 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 241 |
239 240
|
eqeltrdi |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ { 0 } ) → ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 242 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 243 |
242
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 244 |
243 20
|
syl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → 𝑘 ∈ ℕ0 ) |
| 245 |
|
eldifsni |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) → 𝑘 ≠ 0 ) |
| 246 |
245
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → 𝑘 ≠ 0 ) |
| 247 |
|
eldifsn |
⊢ ( 𝑘 ∈ ( ℕ0 ∖ { 0 } ) ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0 ) ) |
| 248 |
244 246 247
|
sylanbrc |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → 𝑘 ∈ ( ℕ0 ∖ { 0 } ) ) |
| 249 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
| 250 |
248 249
|
eleqtrrdi |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → 𝑘 ∈ ℕ ) |
| 251 |
250
|
0expd |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → ( 0 ↑ 𝑘 ) = 0 ) |
| 252 |
251
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( 0 / ( ! ‘ 𝑘 ) ) ) |
| 253 |
244
|
faccld |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 254 |
253
|
nncnd |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 255 |
253
|
nnne0d |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 256 |
254 255
|
div0d |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → ( 0 / ( ! ‘ 𝑘 ) ) = 0 ) |
| 257 |
252 256
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ { 0 } ) ) → ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 0 ) |
| 258 |
|
fzfid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → ( 0 ... 𝑁 ) ∈ Fin ) |
| 259 |
227 241 257 258
|
fsumss |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → Σ 𝑘 ∈ { 0 } ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 260 |
221 259
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ { 0 } ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 261 |
|
0cn |
⊢ 0 ∈ ℂ |
| 262 |
238
|
sumsn |
⊢ ( ( 0 ∈ ℂ ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ { 0 } ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 ) |
| 263 |
261 240 262
|
mp2an |
⊢ Σ 𝑘 ∈ { 0 } ( ( 0 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 |
| 264 |
260 263
|
eqtrdi |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 ) |
| 265 |
207 264
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( 𝑥 · 1 ) ) |
| 266 |
191
|
mulridd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 267 |
266
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 268 |
265 267
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = 𝑥 ) |
| 269 |
268
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) = ( ( ! ‘ 𝑁 ) · 𝑥 ) ) |
| 270 |
210 269
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 𝑥 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · 𝑥 ) ) ) |
| 271 |
|
ovexd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · 𝑥 ) ) ∈ V ) |
| 272 |
206 270 94 271
|
fvmptd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑥 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · 𝑥 ) ) ) |
| 273 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → 𝑦 = 1 ) |
| 274 |
273
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( ⌊ ‘ 𝑦 ) = ( ⌊ ‘ 1 ) ) |
| 275 |
|
flid |
⊢ ( 1 ∈ ℤ → ( ⌊ ‘ 1 ) = 1 ) |
| 276 |
81 275
|
ax-mp |
⊢ ( ⌊ ‘ 1 ) = 1 |
| 277 |
274 276
|
eqtrdi |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( ⌊ ‘ 𝑦 ) = 1 ) |
| 278 |
277
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( 1 ... ( ⌊ ‘ 𝑦 ) ) = ( 1 ... 1 ) ) |
| 279 |
278
|
sumeq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) = Σ 𝑛 ∈ ( 1 ... 1 ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ) |
| 280 |
191
|
div1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 / 1 ) = 𝑥 ) |
| 281 |
280
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( 𝑥 / 1 ) = 𝑥 ) |
| 282 |
281
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( log ‘ ( 𝑥 / 1 ) ) = ( log ‘ 𝑥 ) ) |
| 283 |
282
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( ( log ‘ ( 𝑥 / 1 ) ) ↑ 𝑁 ) = ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 284 |
195
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℂ ) |
| 285 |
283 284
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( ( log ‘ ( 𝑥 / 1 ) ) ↑ 𝑁 ) ∈ ℂ ) |
| 286 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 𝑥 / 𝑛 ) = ( 𝑥 / 1 ) ) |
| 287 |
286
|
fveq2d |
⊢ ( 𝑛 = 1 → ( log ‘ ( 𝑥 / 𝑛 ) ) = ( log ‘ ( 𝑥 / 1 ) ) ) |
| 288 |
287
|
oveq1d |
⊢ ( 𝑛 = 1 → ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) = ( ( log ‘ ( 𝑥 / 1 ) ) ↑ 𝑁 ) ) |
| 289 |
288
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ ( ( log ‘ ( 𝑥 / 1 ) ) ↑ 𝑁 ) ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 1 ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) = ( ( log ‘ ( 𝑥 / 1 ) ) ↑ 𝑁 ) ) |
| 290 |
81 285 289
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → Σ 𝑛 ∈ ( 1 ... 1 ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) = ( ( log ‘ ( 𝑥 / 1 ) ) ↑ 𝑁 ) ) |
| 291 |
279 290 283
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) = ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 292 |
273
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( 𝑥 / 𝑦 ) = ( 𝑥 / 1 ) ) |
| 293 |
292 281
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( 𝑥 / 𝑦 ) = 𝑥 ) |
| 294 |
293
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( log ‘ ( 𝑥 / 𝑦 ) ) = ( log ‘ 𝑥 ) ) |
| 295 |
294
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( log ‘ ( 𝑥 / 𝑦 ) ) = ( log ‘ 𝑥 ) ) |
| 296 |
295
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) = ( ( log ‘ 𝑥 ) ↑ 𝑘 ) ) |
| 297 |
296
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 298 |
297
|
sumeq2dv |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 299 |
273 298
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( 1 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 300 |
202
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 301 |
300
|
mullidd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( 1 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 302 |
299 301
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 303 |
302
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) = ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 304 |
291 303
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) = ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 305 |
|
ovexd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ∈ V ) |
| 306 |
206 304 178 305
|
fvmptd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 1 ) = ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 307 |
272 306
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 1 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · 𝑥 ) ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) |
| 308 |
70 72 191
|
subdird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) · 𝑥 ) = ( ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) · 𝑥 ) − ( ( ! ‘ 𝑁 ) · 𝑥 ) ) ) |
| 309 |
64
|
adantrr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ∈ ℂ ) |
| 310 |
212
|
simprd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ≠ 0 ) |
| 311 |
309 191 310
|
divcan1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) · 𝑥 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) |
| 312 |
311
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) · 𝑥 ) − ( ( ! ‘ 𝑁 ) · 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) − ( ( ! ‘ 𝑁 ) · 𝑥 ) ) ) |
| 313 |
308 312
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) · 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) − ( ( ! ‘ 𝑁 ) · 𝑥 ) ) ) |
| 314 |
205 307 313
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 1 ) ) = ( ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) · 𝑥 ) ) |
| 315 |
314
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 1 ) ) ) = ( abs ‘ ( ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) · 𝑥 ) ) ) |
| 316 |
73 191
|
absmuld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) · 𝑥 ) ) = ( ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) · ( abs ‘ 𝑥 ) ) ) |
| 317 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 318 |
317
|
ad2antrl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 319 |
|
absid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( abs ‘ 𝑥 ) = 𝑥 ) |
| 320 |
318 319
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ 𝑥 ) = 𝑥 ) |
| 321 |
320
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) · ( abs ‘ 𝑥 ) ) = ( ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) · 𝑥 ) ) |
| 322 |
315 316 321
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑥 ) − ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · ( 𝑦 · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) ) ‘ 1 ) ) ) = ( ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) · 𝑥 ) ) |
| 323 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ∈ ℂ ) |
| 324 |
294
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑦 = 1 ) → ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) = ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 325 |
323 324
|
csbied |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ⦋ 1 / 𝑦 ⦌ ( ( log ‘ ( 𝑥 / 𝑦 ) ) ↑ 𝑁 ) = ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 326 |
183 322 325
|
3brtr3d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) · 𝑥 ) ≤ ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 327 |
14
|
adantrr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℝ ) |
| 328 |
74 327 94
|
lemuldivd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) · 𝑥 ) ≤ ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ↔ ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) ≤ ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) ) |
| 329 |
326 328
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) ≤ ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) |
| 330 |
75
|
leabsd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ≤ ( abs ‘ ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) ) |
| 331 |
74 75 77 329 330
|
letrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) ≤ ( abs ‘ ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) ) |
| 332 |
57
|
adantrr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ∈ ℂ ) |
| 333 |
332
|
subid1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) − 0 ) = ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) |
| 334 |
333
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) − 0 ) ) = ( abs ‘ ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) ) ) |
| 335 |
331 334
|
breqtrrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) − ( ! ‘ 𝑁 ) ) ) ≤ ( abs ‘ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) − 0 ) ) ) |
| 336 |
33 34 54 57 69 335
|
rlimsqzlem |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) ) ⇝𝑟 ( ! ‘ 𝑁 ) ) |
| 337 |
|
divsubdir |
⊢ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℂ ∧ ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) = ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) − ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) ) ) |
| 338 |
59 62 66 337
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) = ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) − ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) ) ) |
| 339 |
338
|
mpteq2dva |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) − ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) ) ) ) |
| 340 |
|
rerpdivcl |
⊢ ( ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) ∈ ℝ ) |
| 341 |
27 340
|
sylancom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) ∈ ℝ ) |
| 342 |
|
divass |
⊢ ( ( ( ! ‘ 𝑁 ) ∈ ℂ ∧ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) = ( ( ! ‘ 𝑁 ) · ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) / 𝑥 ) ) ) |
| 343 |
60 61 66 342
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) = ( ( ! ‘ 𝑁 ) · ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) / 𝑥 ) ) ) |
| 344 |
25
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 345 |
18 67 344 68
|
fsumdivc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) / 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) / 𝑥 ) ) |
| 346 |
22
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( log ‘ 𝑥 ) ↑ 𝑘 ) ∈ ℂ ) |
| 347 |
24
|
nnrpd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℝ+ ) |
| 348 |
347
|
rpcnne0d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ! ‘ 𝑘 ) ∈ ℂ ∧ ( ! ‘ 𝑘 ) ≠ 0 ) ) |
| 349 |
66
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 350 |
|
divdiv32 |
⊢ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) ∈ ℂ ∧ ( ( ! ‘ 𝑘 ) ∈ ℂ ∧ ( ! ‘ 𝑘 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) / 𝑥 ) = ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) |
| 351 |
346 348 349 350
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) / 𝑥 ) = ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) |
| 352 |
351
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) / 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) |
| 353 |
345 352
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) / 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) |
| 354 |
353
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ! ‘ 𝑁 ) · ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) / 𝑥 ) ) = ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 355 |
343 354
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) = ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 356 |
355
|
mpteq2dva |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) ) ) |
| 357 |
2
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑥 ∈ ℝ+ ) |
| 358 |
22 357
|
rerpdivcld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) ∈ ℝ ) |
| 359 |
358 24
|
nndivred |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 360 |
18 359
|
fsumrecl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 361 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 362 |
|
rlimconst |
⊢ ( ( ℝ+ ⊆ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ ( ! ‘ 𝑁 ) ) ⇝𝑟 ( ! ‘ 𝑁 ) ) |
| 363 |
361 34 362
|
sylancr |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ! ‘ 𝑁 ) ) ⇝𝑟 ( ! ‘ 𝑁 ) ) |
| 364 |
361
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ℝ+ ⊆ ℝ ) |
| 365 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) ∈ Fin ) |
| 366 |
359
|
anasss |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ) → ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 367 |
358
|
an32s |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) ∈ ℝ ) |
| 368 |
20
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 369 |
368
|
faccld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 370 |
369
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 371 |
370
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 372 |
368 53
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) ) ⇝𝑟 0 ) |
| 373 |
369
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 374 |
|
rlimconst |
⊢ ( ( ℝ+ ⊆ ℝ ∧ ( ! ‘ 𝑘 ) ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ ( ! ‘ 𝑘 ) ) ⇝𝑟 ( ! ‘ 𝑘 ) ) |
| 375 |
361 373 374
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( ! ‘ 𝑘 ) ) ⇝𝑟 ( ! ‘ 𝑘 ) ) |
| 376 |
369
|
nnne0d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 377 |
376
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 378 |
367 371 372 375 376 377
|
rlimdiv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) ⇝𝑟 ( 0 / ( ! ‘ 𝑘 ) ) ) |
| 379 |
373 376
|
div0d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 0 / ( ! ‘ 𝑘 ) ) = 0 ) |
| 380 |
378 379
|
breqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) ⇝𝑟 0 ) |
| 381 |
364 365 366 380
|
fsumrlim |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) ⇝𝑟 Σ 𝑘 ∈ ( 0 ... 𝑁 ) 0 ) |
| 382 |
|
fzfi |
⊢ ( 0 ... 𝑁 ) ∈ Fin |
| 383 |
382
|
olci |
⊢ ( ( 0 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... 𝑁 ) ∈ Fin ) |
| 384 |
|
sumz |
⊢ ( ( ( 0 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... 𝑁 ) ∈ Fin ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) 0 = 0 ) |
| 385 |
383 384
|
ax-mp |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑁 ) 0 = 0 |
| 386 |
381 385
|
breqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) ⇝𝑟 0 ) |
| 387 |
17 360 363 386
|
rlimmul |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) ) ⇝𝑟 ( ( ! ‘ 𝑁 ) · 0 ) ) |
| 388 |
34
|
mul01d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) · 0 ) = 0 ) |
| 389 |
387 388
|
breqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / 𝑥 ) / ( ! ‘ 𝑘 ) ) ) ) ⇝𝑟 0 ) |
| 390 |
356 389
|
eqbrtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) ) ⇝𝑟 0 ) |
| 391 |
56 341 54 390
|
rlimsub |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) − ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) ) ) ⇝𝑟 ( 0 − 0 ) ) |
| 392 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 393 |
391 392
|
breqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) / 𝑥 ) − ( ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) / 𝑥 ) ) ) ⇝𝑟 0 ) |
| 394 |
339 393
|
eqbrtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) ⇝𝑟 0 ) |
| 395 |
30 32 336 394
|
rlimadd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) + ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) ) ⇝𝑟 ( ( ! ‘ 𝑁 ) + 0 ) ) |
| 396 |
|
divsubdir |
⊢ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) ∈ ℂ ∧ ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) / 𝑥 ) − ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) ) |
| 397 |
58 63 66 396
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) / 𝑥 ) − ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) ) |
| 398 |
397
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) + ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) / 𝑥 ) − ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) + ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) ) |
| 399 |
10 2
|
rerpdivcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) / 𝑥 ) ∈ ℝ ) |
| 400 |
399
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) / 𝑥 ) ∈ ℂ ) |
| 401 |
32
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ∈ ℂ ) |
| 402 |
400 401
|
npcand |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) / 𝑥 ) − ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) + ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) / 𝑥 ) ) |
| 403 |
398 402
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) + ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) / 𝑥 ) ) |
| 404 |
403
|
mpteq2dva |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) − ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) ) / 𝑥 ) + ( ( ( ( log ‘ 𝑥 ) ↑ 𝑁 ) − ( ( ! ‘ 𝑁 ) · Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( log ‘ 𝑥 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) / 𝑥 ) ) ) |
| 405 |
34
|
addridd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) + 0 ) = ( ! ‘ 𝑁 ) ) |
| 406 |
395 404 405
|
3brtr3d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 𝑁 ) / 𝑥 ) ) ⇝𝑟 ( ! ‘ 𝑁 ) ) |