Metamath Proof Explorer


Theorem fsumrlim

Description: Limit of a finite sum of converging sequences. Note that C ( k ) is a collection of functions with implicit parameter k , each of which converges to D ( k ) as n ~> +oo . (Contributed by Mario Carneiro, 22-May-2016)

Ref Expression
Hypotheses fsumrlim.1 ( 𝜑𝐴 ⊆ ℝ )
fsumrlim.2 ( 𝜑𝐵 ∈ Fin )
fsumrlim.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑘𝐵 ) ) → 𝐶𝑉 )
fsumrlim.4 ( ( 𝜑𝑘𝐵 ) → ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐷 )
Assertion fsumrlim ( 𝜑 → ( 𝑥𝐴 ↦ Σ 𝑘𝐵 𝐶 ) ⇝𝑟 Σ 𝑘𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 fsumrlim.1 ( 𝜑𝐴 ⊆ ℝ )
2 fsumrlim.2 ( 𝜑𝐵 ∈ Fin )
3 fsumrlim.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑘𝐵 ) ) → 𝐶𝑉 )
4 fsumrlim.4 ( ( 𝜑𝑘𝐵 ) → ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐷 )
5 ssid 𝐵𝐵
6 sseq1 ( 𝑤 = ∅ → ( 𝑤𝐵 ↔ ∅ ⊆ 𝐵 ) )
7 sumeq1 ( 𝑤 = ∅ → Σ 𝑘𝑤 𝐶 = Σ 𝑘 ∈ ∅ 𝐶 )
8 sum0 Σ 𝑘 ∈ ∅ 𝐶 = 0
9 7 8 eqtrdi ( 𝑤 = ∅ → Σ 𝑘𝑤 𝐶 = 0 )
10 9 mpteq2dv ( 𝑤 = ∅ → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) = ( 𝑥𝐴 ↦ 0 ) )
11 sumeq1 ( 𝑤 = ∅ → Σ 𝑘𝑤 𝐷 = Σ 𝑘 ∈ ∅ 𝐷 )
12 sum0 Σ 𝑘 ∈ ∅ 𝐷 = 0
13 11 12 eqtrdi ( 𝑤 = ∅ → Σ 𝑘𝑤 𝐷 = 0 )
14 10 13 breq12d ( 𝑤 = ∅ → ( ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ↔ ( 𝑥𝐴 ↦ 0 ) ⇝𝑟 0 ) )
15 6 14 imbi12d ( 𝑤 = ∅ → ( ( 𝑤𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ) ↔ ( ∅ ⊆ 𝐵 → ( 𝑥𝐴 ↦ 0 ) ⇝𝑟 0 ) ) )
16 15 imbi2d ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐵 → ( 𝑥𝐴 ↦ 0 ) ⇝𝑟 0 ) ) ) )
17 sseq1 ( 𝑤 = 𝑦 → ( 𝑤𝐵𝑦𝐵 ) )
18 sumeq1 ( 𝑤 = 𝑦 → Σ 𝑘𝑤 𝐶 = Σ 𝑘𝑦 𝐶 )
19 18 mpteq2dv ( 𝑤 = 𝑦 → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) = ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) )
20 sumeq1 ( 𝑤 = 𝑦 → Σ 𝑘𝑤 𝐷 = Σ 𝑘𝑦 𝐷 )
21 19 20 breq12d ( 𝑤 = 𝑦 → ( ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ↔ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) )
22 17 21 imbi12d ( 𝑤 = 𝑦 → ( ( 𝑤𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ) ↔ ( 𝑦𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) ) )
23 22 imbi2d ( 𝑤 = 𝑦 → ( ( 𝜑 → ( 𝑤𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ) ) ↔ ( 𝜑 → ( 𝑦𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) ) ) )
24 sseq1 ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑤𝐵 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) )
25 sumeq1 ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘𝑤 𝐶 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 )
26 25 mpteq2dv ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) = ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) )
27 sumeq1 ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘𝑤 𝐷 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 )
28 26 27 breq12d ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ↔ ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) )
29 24 28 imbi12d ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑤𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) )
30 29 imbi2d ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) )
31 sseq1 ( 𝑤 = 𝐵 → ( 𝑤𝐵𝐵𝐵 ) )
32 sumeq1 ( 𝑤 = 𝐵 → Σ 𝑘𝑤 𝐶 = Σ 𝑘𝐵 𝐶 )
33 32 mpteq2dv ( 𝑤 = 𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) = ( 𝑥𝐴 ↦ Σ 𝑘𝐵 𝐶 ) )
34 sumeq1 ( 𝑤 = 𝐵 → Σ 𝑘𝑤 𝐷 = Σ 𝑘𝐵 𝐷 )
35 33 34 breq12d ( 𝑤 = 𝐵 → ( ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ↔ ( 𝑥𝐴 ↦ Σ 𝑘𝐵 𝐶 ) ⇝𝑟 Σ 𝑘𝐵 𝐷 ) )
36 31 35 imbi12d ( 𝑤 = 𝐵 → ( ( 𝑤𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ) ↔ ( 𝐵𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝐵 𝐶 ) ⇝𝑟 Σ 𝑘𝐵 𝐷 ) ) )
37 36 imbi2d ( 𝑤 = 𝐵 → ( ( 𝜑 → ( 𝑤𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑤 𝐶 ) ⇝𝑟 Σ 𝑘𝑤 𝐷 ) ) ↔ ( 𝜑 → ( 𝐵𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝐵 𝐶 ) ⇝𝑟 Σ 𝑘𝐵 𝐷 ) ) ) )
38 0cn 0 ∈ ℂ
39 rlimconst ( ( 𝐴 ⊆ ℝ ∧ 0 ∈ ℂ ) → ( 𝑥𝐴 ↦ 0 ) ⇝𝑟 0 )
40 1 38 39 sylancl ( 𝜑 → ( 𝑥𝐴 ↦ 0 ) ⇝𝑟 0 )
41 40 a1d ( 𝜑 → ( ∅ ⊆ 𝐵 → ( 𝑥𝐴 ↦ 0 ) ⇝𝑟 0 ) )
42 ssun1 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } )
43 sstr ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) → 𝑦𝐵 )
44 42 43 mpan ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵𝑦𝐵 )
45 44 imim1i ( ( 𝑦𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) )
46 sumex Σ 𝑘𝑦 𝑤 / 𝑥 𝐶 ∈ V
47 46 a1i ( ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) ∧ 𝑤𝐴 ) → Σ 𝑘𝑦 𝑤 / 𝑥 𝐶 ∈ V )
48 simprr ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 )
49 48 unssbd ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → { 𝑧 } ⊆ 𝐵 )
50 vex 𝑧 ∈ V
51 50 snss ( 𝑧𝐵 ↔ { 𝑧 } ⊆ 𝐵 )
52 49 51 sylibr ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝑧𝐵 )
53 52 adantr ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝑧𝐵 )
54 3 anass1rs ( ( ( 𝜑𝑘𝐵 ) ∧ 𝑥𝐴 ) → 𝐶𝑉 )
55 54 4 rlimmptrcl ( ( ( 𝜑𝑘𝐵 ) ∧ 𝑥𝐴 ) → 𝐶 ∈ ℂ )
56 55 an32s ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℂ )
57 56 adantllr ( ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ℂ )
58 57 ralrimiva ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → ∀ 𝑘𝐵 𝐶 ∈ ℂ )
59 nfcsb1v 𝑘 𝑧 / 𝑘 𝐶
60 59 nfel1 𝑘 𝑧 / 𝑘 𝐶 ∈ ℂ
61 csbeq1a ( 𝑘 = 𝑧𝐶 = 𝑧 / 𝑘 𝐶 )
62 61 eleq1d ( 𝑘 = 𝑧 → ( 𝐶 ∈ ℂ ↔ 𝑧 / 𝑘 𝐶 ∈ ℂ ) )
63 60 62 rspc ( 𝑧𝐵 → ( ∀ 𝑘𝐵 𝐶 ∈ ℂ → 𝑧 / 𝑘 𝐶 ∈ ℂ ) )
64 53 58 63 sylc ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝑧 / 𝑘 𝐶 ∈ ℂ )
65 64 ralrimiva ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑥𝐴 𝑧 / 𝑘 𝐶 ∈ ℂ )
66 65 adantr ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ∀ 𝑥𝐴 𝑧 / 𝑘 𝐶 ∈ ℂ )
67 nfcsb1v 𝑥 𝑤 / 𝑥 𝑧 / 𝑘 𝐶
68 67 nfel1 𝑥 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 ∈ ℂ
69 csbeq1a ( 𝑥 = 𝑤 𝑧 / 𝑘 𝐶 = 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 )
70 69 eleq1d ( 𝑥 = 𝑤 → ( 𝑧 / 𝑘 𝐶 ∈ ℂ ↔ 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 ∈ ℂ ) )
71 68 70 rspc ( 𝑤𝐴 → ( ∀ 𝑥𝐴 𝑧 / 𝑘 𝐶 ∈ ℂ → 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 ∈ ℂ ) )
72 66 71 mpan9 ( ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) ∧ 𝑤𝐴 ) → 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 ∈ ℂ )
73 72 elexd ( ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) ∧ 𝑤𝐴 ) → 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 ∈ V )
74 nfcv 𝑤 Σ 𝑘𝑦 𝐶
75 nfcv 𝑥 𝑦
76 nfcsb1v 𝑥 𝑤 / 𝑥 𝐶
77 75 76 nfsum 𝑥 Σ 𝑘𝑦 𝑤 / 𝑥 𝐶
78 csbeq1a ( 𝑥 = 𝑤𝐶 = 𝑤 / 𝑥 𝐶 )
79 78 sumeq2sdv ( 𝑥 = 𝑤 → Σ 𝑘𝑦 𝐶 = Σ 𝑘𝑦 𝑤 / 𝑥 𝐶 )
80 74 77 79 cbvmpt ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) = ( 𝑤𝐴 ↦ Σ 𝑘𝑦 𝑤 / 𝑥 𝐶 )
81 simpr ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 )
82 80 81 eqbrtrrid ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( 𝑤𝐴 ↦ Σ 𝑘𝑦 𝑤 / 𝑥 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 )
83 nfcv 𝑤 𝑧 / 𝑘 𝐶
84 83 67 69 cbvmpt ( 𝑥𝐴 𝑧 / 𝑘 𝐶 ) = ( 𝑤𝐴 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 )
85 4 ralrimiva ( 𝜑 → ∀ 𝑘𝐵 ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐷 )
86 85 adantr ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑘𝐵 ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐷 )
87 nfcv 𝑘 𝐴
88 87 59 nfmpt 𝑘 ( 𝑥𝐴 𝑧 / 𝑘 𝐶 )
89 nfcv 𝑘𝑟
90 nfcsb1v 𝑘 𝑧 / 𝑘 𝐷
91 88 89 90 nfbr 𝑘 ( 𝑥𝐴 𝑧 / 𝑘 𝐶 ) ⇝𝑟 𝑧 / 𝑘 𝐷
92 61 mpteq2dv ( 𝑘 = 𝑧 → ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴 𝑧 / 𝑘 𝐶 ) )
93 csbeq1a ( 𝑘 = 𝑧𝐷 = 𝑧 / 𝑘 𝐷 )
94 92 93 breq12d ( 𝑘 = 𝑧 → ( ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐷 ↔ ( 𝑥𝐴 𝑧 / 𝑘 𝐶 ) ⇝𝑟 𝑧 / 𝑘 𝐷 ) )
95 91 94 rspc ( 𝑧𝐵 → ( ∀ 𝑘𝐵 ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐷 → ( 𝑥𝐴 𝑧 / 𝑘 𝐶 ) ⇝𝑟 𝑧 / 𝑘 𝐷 ) )
96 52 86 95 sylc ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥𝐴 𝑧 / 𝑘 𝐶 ) ⇝𝑟 𝑧 / 𝑘 𝐷 )
97 96 adantr ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( 𝑥𝐴 𝑧 / 𝑘 𝐶 ) ⇝𝑟 𝑧 / 𝑘 𝐷 )
98 84 97 eqbrtrrid ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( 𝑤𝐴 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 ) ⇝𝑟 𝑧 / 𝑘 𝐷 )
99 47 73 82 98 rlimadd ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( 𝑤𝐴 ↦ ( Σ 𝑘𝑦 𝑤 / 𝑥 𝐶 + 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 ) ) ⇝𝑟 ( Σ 𝑘𝑦 𝐷 + 𝑧 / 𝑘 𝐷 ) )
100 simprl ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ¬ 𝑧𝑦 )
101 disjsn ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧𝑦 )
102 100 101 sylibr ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ )
103 102 adantr ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ )
104 eqidd ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) )
105 2 adantr ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝐵 ∈ Fin )
106 105 48 ssfid ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
107 106 adantr ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
108 48 sselda ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘𝐵 )
109 108 adantlr ( ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘𝐵 )
110 109 57 syldan ( ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐶 ∈ ℂ )
111 103 104 107 110 fsumsplit ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 = ( Σ 𝑘𝑦 𝐶 + Σ 𝑘 ∈ { 𝑧 } 𝐶 ) )
112 nfcv 𝑤 𝐶
113 nfcsb1v 𝑘 𝑤 / 𝑘 𝐶
114 csbeq1a ( 𝑘 = 𝑤𝐶 = 𝑤 / 𝑘 𝐶 )
115 112 113 114 cbvsumi Σ 𝑘 ∈ { 𝑧 } 𝐶 = Σ 𝑤 ∈ { 𝑧 } 𝑤 / 𝑘 𝐶
116 csbeq1 ( 𝑤 = 𝑧 𝑤 / 𝑘 𝐶 = 𝑧 / 𝑘 𝐶 )
117 116 sumsn ( ( 𝑧𝐵 𝑧 / 𝑘 𝐶 ∈ ℂ ) → Σ 𝑤 ∈ { 𝑧 } 𝑤 / 𝑘 𝐶 = 𝑧 / 𝑘 𝐶 )
118 53 64 117 syl2anc ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → Σ 𝑤 ∈ { 𝑧 } 𝑤 / 𝑘 𝐶 = 𝑧 / 𝑘 𝐶 )
119 115 118 syl5eq ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → Σ 𝑘 ∈ { 𝑧 } 𝐶 = 𝑧 / 𝑘 𝐶 )
120 119 oveq2d ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → ( Σ 𝑘𝑦 𝐶 + Σ 𝑘 ∈ { 𝑧 } 𝐶 ) = ( Σ 𝑘𝑦 𝐶 + 𝑧 / 𝑘 𝐶 ) )
121 111 120 eqtrd ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑥𝐴 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 = ( Σ 𝑘𝑦 𝐶 + 𝑧 / 𝑘 𝐶 ) )
122 121 mpteq2dva ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑥𝐴 ↦ ( Σ 𝑘𝑦 𝐶 + 𝑧 / 𝑘 𝐶 ) ) )
123 122 adantr ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑥𝐴 ↦ ( Σ 𝑘𝑦 𝐶 + 𝑧 / 𝑘 𝐶 ) ) )
124 nfcv 𝑤 ( Σ 𝑘𝑦 𝐶 + 𝑧 / 𝑘 𝐶 )
125 nfcv 𝑥 +
126 77 125 67 nfov 𝑥 ( Σ 𝑘𝑦 𝑤 / 𝑥 𝐶 + 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 )
127 79 69 oveq12d ( 𝑥 = 𝑤 → ( Σ 𝑘𝑦 𝐶 + 𝑧 / 𝑘 𝐶 ) = ( Σ 𝑘𝑦 𝑤 / 𝑥 𝐶 + 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 ) )
128 124 126 127 cbvmpt ( 𝑥𝐴 ↦ ( Σ 𝑘𝑦 𝐶 + 𝑧 / 𝑘 𝐶 ) ) = ( 𝑤𝐴 ↦ ( Σ 𝑘𝑦 𝑤 / 𝑥 𝐶 + 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 ) )
129 123 128 eqtrdi ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) = ( 𝑤𝐴 ↦ ( Σ 𝑘𝑦 𝑤 / 𝑥 𝐶 + 𝑤 / 𝑥 𝑧 / 𝑘 𝐶 ) ) )
130 eqidd ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) )
131 rlimcl ( ( 𝑥𝐴𝐶 ) ⇝𝑟 𝐷𝐷 ∈ ℂ )
132 4 131 syl ( ( 𝜑𝑘𝐵 ) → 𝐷 ∈ ℂ )
133 132 adantlr ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘𝐵 ) → 𝐷 ∈ ℂ )
134 108 133 syldan ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐷 ∈ ℂ )
135 102 130 106 134 fsumsplit ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘𝑦 𝐷 + Σ 𝑘 ∈ { 𝑧 } 𝐷 ) )
136 nfcv 𝑤 𝐷
137 nfcsb1v 𝑘 𝑤 / 𝑘 𝐷
138 csbeq1a ( 𝑘 = 𝑤𝐷 = 𝑤 / 𝑘 𝐷 )
139 136 137 138 cbvsumi Σ 𝑘 ∈ { 𝑧 } 𝐷 = Σ 𝑤 ∈ { 𝑧 } 𝑤 / 𝑘 𝐷
140 133 ralrimiva ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ∀ 𝑘𝐵 𝐷 ∈ ℂ )
141 90 nfel1 𝑘 𝑧 / 𝑘 𝐷 ∈ ℂ
142 93 eleq1d ( 𝑘 = 𝑧 → ( 𝐷 ∈ ℂ ↔ 𝑧 / 𝑘 𝐷 ∈ ℂ ) )
143 141 142 rspc ( 𝑧𝐵 → ( ∀ 𝑘𝐵 𝐷 ∈ ℂ → 𝑧 / 𝑘 𝐷 ∈ ℂ ) )
144 52 140 143 sylc ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → 𝑧 / 𝑘 𝐷 ∈ ℂ )
145 csbeq1 ( 𝑤 = 𝑧 𝑤 / 𝑘 𝐷 = 𝑧 / 𝑘 𝐷 )
146 145 sumsn ( ( 𝑧𝐵 𝑧 / 𝑘 𝐷 ∈ ℂ ) → Σ 𝑤 ∈ { 𝑧 } 𝑤 / 𝑘 𝐷 = 𝑧 / 𝑘 𝐷 )
147 52 144 146 syl2anc ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑤 ∈ { 𝑧 } 𝑤 / 𝑘 𝐷 = 𝑧 / 𝑘 𝐷 )
148 139 147 syl5eq ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ { 𝑧 } 𝐷 = 𝑧 / 𝑘 𝐷 )
149 148 oveq2d ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( Σ 𝑘𝑦 𝐷 + Σ 𝑘 ∈ { 𝑧 } 𝐷 ) = ( Σ 𝑘𝑦 𝐷 + 𝑧 / 𝑘 𝐷 ) )
150 135 149 eqtrd ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘𝑦 𝐷 + 𝑧 / 𝑘 𝐷 ) )
151 150 adantr ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 = ( Σ 𝑘𝑦 𝐷 + 𝑧 / 𝑘 𝐷 ) )
152 99 129 151 3brtr4d ( ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) ∧ ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 )
153 152 ex ( ( 𝜑 ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 ) ) → ( ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) )
154 153 expr ( ( 𝜑 ∧ ¬ 𝑧𝑦 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) )
155 154 a2d ( ( 𝜑 ∧ ¬ 𝑧𝑦 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) )
156 45 155 syl5 ( ( 𝜑 ∧ ¬ 𝑧𝑦 ) → ( ( 𝑦𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) )
157 156 expcom ( ¬ 𝑧𝑦 → ( 𝜑 → ( ( 𝑦𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) )
158 157 a2d ( ¬ 𝑧𝑦 → ( ( 𝜑 → ( 𝑦𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) )
159 158 adantl ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( 𝜑 → ( 𝑦𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝑦 𝐶 ) ⇝𝑟 Σ 𝑘𝑦 𝐷 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐶 ) ⇝𝑟 Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐷 ) ) ) )
160 16 23 30 37 41 159 findcard2s ( 𝐵 ∈ Fin → ( 𝜑 → ( 𝐵𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝐵 𝐶 ) ⇝𝑟 Σ 𝑘𝐵 𝐷 ) ) )
161 2 160 mpcom ( 𝜑 → ( 𝐵𝐵 → ( 𝑥𝐴 ↦ Σ 𝑘𝐵 𝐶 ) ⇝𝑟 Σ 𝑘𝐵 𝐷 ) )
162 5 161 mpi ( 𝜑 → ( 𝑥𝐴 ↦ Σ 𝑘𝐵 𝐶 ) ⇝𝑟 Σ 𝑘𝐵 𝐷 )