| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntsval.1 |
|- S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
| 2 |
|
fveq2 |
|- ( i = n -> ( Lam ` i ) = ( Lam ` n ) ) |
| 3 |
|
fveq2 |
|- ( i = n -> ( log ` i ) = ( log ` n ) ) |
| 4 |
|
oveq2 |
|- ( i = n -> ( a / i ) = ( a / n ) ) |
| 5 |
4
|
fveq2d |
|- ( i = n -> ( psi ` ( a / i ) ) = ( psi ` ( a / n ) ) ) |
| 6 |
3 5
|
oveq12d |
|- ( i = n -> ( ( log ` i ) + ( psi ` ( a / i ) ) ) = ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) |
| 7 |
2 6
|
oveq12d |
|- ( i = n -> ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) ) |
| 8 |
7
|
cbvsumv |
|- sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) |
| 9 |
|
fveq2 |
|- ( a = A -> ( |_ ` a ) = ( |_ ` A ) ) |
| 10 |
9
|
oveq2d |
|- ( a = A -> ( 1 ... ( |_ ` a ) ) = ( 1 ... ( |_ ` A ) ) ) |
| 11 |
|
fvoveq1 |
|- ( a = A -> ( psi ` ( a / n ) ) = ( psi ` ( A / n ) ) ) |
| 12 |
11
|
oveq2d |
|- ( a = A -> ( ( log ` n ) + ( psi ` ( a / n ) ) ) = ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) |
| 13 |
12
|
oveq2d |
|- ( a = A -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) = ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) |
| 14 |
13
|
adantr |
|- ( ( a = A /\ n e. ( 1 ... ( |_ ` a ) ) ) -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) = ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) |
| 15 |
10 14
|
sumeq12dv |
|- ( a = A -> sum_ n e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) |
| 16 |
8 15
|
eqtrid |
|- ( a = A -> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) |
| 17 |
|
sumex |
|- sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) e. _V |
| 18 |
16 1 17
|
fvmpt |
|- ( A e. RR -> ( S ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) |