| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  |-  S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) | 
						
							| 2 |  | fveq2 |  |-  ( i = n -> ( Lam ` i ) = ( Lam ` n ) ) | 
						
							| 3 |  | fveq2 |  |-  ( i = n -> ( log ` i ) = ( log ` n ) ) | 
						
							| 4 |  | oveq2 |  |-  ( i = n -> ( a / i ) = ( a / n ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( i = n -> ( psi ` ( a / i ) ) = ( psi ` ( a / n ) ) ) | 
						
							| 6 | 3 5 | oveq12d |  |-  ( i = n -> ( ( log ` i ) + ( psi ` ( a / i ) ) ) = ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) | 
						
							| 7 | 2 6 | oveq12d |  |-  ( i = n -> ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) ) | 
						
							| 8 | 7 | cbvsumv |  |-  sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( a = A -> ( |_ ` a ) = ( |_ ` A ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( a = A -> ( 1 ... ( |_ ` a ) ) = ( 1 ... ( |_ ` A ) ) ) | 
						
							| 11 |  | fvoveq1 |  |-  ( a = A -> ( psi ` ( a / n ) ) = ( psi ` ( A / n ) ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( a = A -> ( ( log ` n ) + ( psi ` ( a / n ) ) ) = ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( a = A -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) = ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( a = A /\ n e. ( 1 ... ( |_ ` a ) ) ) -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) = ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) | 
						
							| 15 | 10 14 | sumeq12dv |  |-  ( a = A -> sum_ n e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( a / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) | 
						
							| 16 | 8 15 | eqtrid |  |-  ( a = A -> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) | 
						
							| 17 |  | sumex |  |-  sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) e. _V | 
						
							| 18 | 16 1 17 | fvmpt |  |-  ( A e. RR -> ( S ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) |