Metamath Proof Explorer


Theorem pntsval

Description: Define the "Selberg function", whose asymptotic behavior is the content of selberg . (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntsval.1 S=ai=1aΛilogi+ψai
Assertion pntsval ASA=n=1AΛnlogn+ψAn

Proof

Step Hyp Ref Expression
1 pntsval.1 S=ai=1aΛilogi+ψai
2 fveq2 i=nΛi=Λn
3 fveq2 i=nlogi=logn
4 oveq2 i=nai=an
5 4 fveq2d i=nψai=ψan
6 3 5 oveq12d i=nlogi+ψai=logn+ψan
7 2 6 oveq12d i=nΛilogi+ψai=Λnlogn+ψan
8 7 cbvsumv i=1aΛilogi+ψai=n=1aΛnlogn+ψan
9 fveq2 a=Aa=A
10 9 oveq2d a=A1a=1A
11 fvoveq1 a=Aψan=ψAn
12 11 oveq2d a=Alogn+ψan=logn+ψAn
13 12 oveq2d a=AΛnlogn+ψan=Λnlogn+ψAn
14 13 adantr a=An1aΛnlogn+ψan=Λnlogn+ψAn
15 10 14 sumeq12dv a=An=1aΛnlogn+ψan=n=1AΛnlogn+ψAn
16 8 15 eqtrid a=Ai=1aΛilogi+ψai=n=1AΛnlogn+ψAn
17 sumex n=1AΛnlogn+ψAnV
18 16 1 17 fvmpt ASA=n=1AΛnlogn+ψAn