Metamath Proof Explorer


Theorem pntsf

Description: Functionality of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntsval.1 S=ai=1aΛilogi+ψai
Assertion pntsf S:

Proof

Step Hyp Ref Expression
1 pntsval.1 S=ai=1aΛilogi+ψai
2 fzfid a1aFin
3 elfznn i1ai
4 3 adantl ai1ai
5 vmacl iΛi
6 4 5 syl ai1aΛi
7 4 nnrpd ai1ai+
8 7 relogcld ai1alogi
9 simpl ai1aa
10 9 4 nndivred ai1aai
11 chpcl aiψai
12 10 11 syl ai1aψai
13 8 12 readdcld ai1alogi+ψai
14 6 13 remulcld ai1aΛilogi+ψai
15 2 14 fsumrecl ai=1aΛilogi+ψai
16 1 15 fmpti S: