Metamath Proof Explorer


Theorem selbergs

Description: Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntsval.1 S=ai=1aΛilogi+ψai
Assertion selbergs x+Sxx2logx𝑂1

Proof

Step Hyp Ref Expression
1 pntsval.1 S=ai=1aΛilogi+ψai
2 rpre x+x
3 1 pntsval xSx=n=1xΛnlogn+ψxn
4 2 3 syl x+Sx=n=1xΛnlogn+ψxn
5 4 oveq1d x+Sxx=n=1xΛnlogn+ψxnx
6 5 oveq1d x+Sxx2logx=n=1xΛnlogn+ψxnx2logx
7 6 mpteq2ia x+Sxx2logx=x+n=1xΛnlogn+ψxnx2logx
8 selberg x+n=1xΛnlogn+ψxnx2logx𝑂1
9 7 8 eqeltri x+Sxx2logx𝑂1