| Step |
Hyp |
Ref |
Expression |
| 1 |
|
polssat.a |
|- A = ( Atoms ` K ) |
| 2 |
|
polssat.p |
|- ._|_ = ( _|_P ` K ) |
| 3 |
|
0ss |
|- (/) C_ A |
| 4 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 5 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
| 6 |
4 1 5 2
|
polvalN |
|- ( ( K e. B /\ (/) C_ A ) -> ( ._|_ ` (/) ) = ( A i^i |^|_ p e. (/) ( ( pmap ` K ) ` ( ( oc ` K ) ` p ) ) ) ) |
| 7 |
3 6
|
mpan2 |
|- ( K e. B -> ( ._|_ ` (/) ) = ( A i^i |^|_ p e. (/) ( ( pmap ` K ) ` ( ( oc ` K ) ` p ) ) ) ) |
| 8 |
|
0iin |
|- |^|_ p e. (/) ( ( pmap ` K ) ` ( ( oc ` K ) ` p ) ) = _V |
| 9 |
8
|
ineq2i |
|- ( A i^i |^|_ p e. (/) ( ( pmap ` K ) ` ( ( oc ` K ) ` p ) ) ) = ( A i^i _V ) |
| 10 |
|
inv1 |
|- ( A i^i _V ) = A |
| 11 |
9 10
|
eqtri |
|- ( A i^i |^|_ p e. (/) ( ( pmap ` K ) ` ( ( oc ` K ) ` p ) ) ) = A |
| 12 |
7 11
|
eqtrdi |
|- ( K e. B -> ( ._|_ ` (/) ) = A ) |