Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbas.p |
|- P = ( S Xs_ R ) |
2 |
|
prdsbas.s |
|- ( ph -> S e. V ) |
3 |
|
prdsbas.r |
|- ( ph -> R e. W ) |
4 |
|
prdsbas.b |
|- B = ( Base ` P ) |
5 |
|
prdsbas.i |
|- ( ph -> dom R = I ) |
6 |
|
prdshom.h |
|- H = ( Hom ` P ) |
7 |
|
prdsco.o |
|- .xb = ( comp ` P ) |
8 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
9 |
1 2 3 4 5
|
prdsbas |
|- ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) ) |
10 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
11 |
1 2 3 4 5 10
|
prdsplusg |
|- ( ph -> ( +g ` P ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
12 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
13 |
1 2 3 4 5 12
|
prdsmulr |
|- ( ph -> ( .r ` P ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
14 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
15 |
1 2 3 4 5 8 14
|
prdsvsca |
|- ( ph -> ( .s ` P ) = ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) ) |
16 |
|
eqidd |
|- ( ph -> ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) ) |
17 |
|
eqid |
|- ( TopSet ` P ) = ( TopSet ` P ) |
18 |
1 2 3 4 5 17
|
prdstset |
|- ( ph -> ( TopSet ` P ) = ( Xt_ ` ( TopOpen o. R ) ) ) |
19 |
|
eqid |
|- ( le ` P ) = ( le ` P ) |
20 |
1 2 3 4 5 19
|
prdsle |
|- ( ph -> ( le ` P ) = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
21 |
|
eqid |
|- ( dist ` P ) = ( dist ` P ) |
22 |
1 2 3 4 5 21
|
prdsds |
|- ( ph -> ( dist ` P ) = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
23 |
1 2 3 4 5 6
|
prdshom |
|- ( ph -> H = ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) ) |
24 |
|
eqidd |
|- ( ph -> ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) ) |
25 |
1 8 5 9 11 13 15 16 18 20 22 23 24 2 3
|
prdsval |
|- ( ph -> P = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( .r ` P ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( .s ` P ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) ) |
26 |
|
ccoid |
|- comp = Slot ( comp ` ndx ) |
27 |
4
|
fvexi |
|- B e. _V |
28 |
27 27
|
xpex |
|- ( B X. B ) e. _V |
29 |
28 27
|
mpoex |
|- ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) e. _V |
30 |
29
|
a1i |
|- ( ph -> ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) e. _V ) |
31 |
|
snsspr2 |
|- { <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } C_ { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } |
32 |
|
ssun2 |
|- { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } C_ ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) |
33 |
31 32
|
sstri |
|- { <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } C_ ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) |
34 |
|
ssun2 |
|- ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( .r ` P ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( .s ` P ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) |
35 |
33 34
|
sstri |
|- { <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( .r ` P ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( .s ` P ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) |
36 |
25 7 26 30 35
|
prdsbaslem |
|- ( ph -> .xb = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) ) |