Metamath Proof Explorer


Theorem prdsco

Description: Structure product composition operation. (Contributed by Mario Carneiro, 7-Jan-2017) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p
|- P = ( S Xs_ R )
prdsbas.s
|- ( ph -> S e. V )
prdsbas.r
|- ( ph -> R e. W )
prdsbas.b
|- B = ( Base ` P )
prdsbas.i
|- ( ph -> dom R = I )
prdshom.h
|- H = ( Hom ` P )
prdsco.o
|- .xb = ( comp ` P )
Assertion prdsco
|- ( ph -> .xb = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 prdsbas.p
 |-  P = ( S Xs_ R )
2 prdsbas.s
 |-  ( ph -> S e. V )
3 prdsbas.r
 |-  ( ph -> R e. W )
4 prdsbas.b
 |-  B = ( Base ` P )
5 prdsbas.i
 |-  ( ph -> dom R = I )
6 prdshom.h
 |-  H = ( Hom ` P )
7 prdsco.o
 |-  .xb = ( comp ` P )
8 eqid
 |-  ( Base ` S ) = ( Base ` S )
9 1 2 3 4 5 prdsbas
 |-  ( ph -> B = X_ x e. I ( Base ` ( R ` x ) ) )
10 eqid
 |-  ( +g ` P ) = ( +g ` P )
11 1 2 3 4 5 10 prdsplusg
 |-  ( ph -> ( +g ` P ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( +g ` ( R ` x ) ) ( g ` x ) ) ) ) )
12 eqid
 |-  ( .r ` P ) = ( .r ` P )
13 1 2 3 4 5 12 prdsmulr
 |-  ( ph -> ( .r ` P ) = ( f e. B , g e. B |-> ( x e. I |-> ( ( f ` x ) ( .r ` ( R ` x ) ) ( g ` x ) ) ) ) )
14 eqid
 |-  ( .s ` P ) = ( .s ` P )
15 1 2 3 4 5 8 14 prdsvsca
 |-  ( ph -> ( .s ` P ) = ( f e. ( Base ` S ) , g e. B |-> ( x e. I |-> ( f ( .s ` ( R ` x ) ) ( g ` x ) ) ) ) )
16 eqidd
 |-  ( ph -> ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) = ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) )
17 eqid
 |-  ( TopSet ` P ) = ( TopSet ` P )
18 1 2 3 4 5 17 prdstset
 |-  ( ph -> ( TopSet ` P ) = ( Xt_ ` ( TopOpen o. R ) ) )
19 eqid
 |-  ( le ` P ) = ( le ` P )
20 1 2 3 4 5 19 prdsle
 |-  ( ph -> ( le ` P ) = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } )
21 eqid
 |-  ( dist ` P ) = ( dist ` P )
22 1 2 3 4 5 21 prdsds
 |-  ( ph -> ( dist ` P ) = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) )
23 1 2 3 4 5 6 prdshom
 |-  ( ph -> H = ( f e. B , g e. B |-> X_ x e. I ( ( f ` x ) ( Hom ` ( R ` x ) ) ( g ` x ) ) ) )
24 eqidd
 |-  ( ph -> ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) )
25 1 8 5 9 11 13 15 16 18 20 22 23 24 2 3 prdsval
 |-  ( ph -> P = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( .r ` P ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( .s ` P ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) ) )
26 ccoid
 |-  comp = Slot ( comp ` ndx )
27 4 fvexi
 |-  B e. _V
28 27 27 xpex
 |-  ( B X. B ) e. _V
29 28 27 mpoex
 |-  ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) e. _V
30 29 a1i
 |-  ( ph -> ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) e. _V )
31 snsspr2
 |-  { <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } C_ { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. }
32 ssun2
 |-  { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } C_ ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } )
33 31 32 sstri
 |-  { <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } C_ ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } )
34 ssun2
 |-  ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( .r ` P ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( .s ` P ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) )
35 33 34 sstri
 |-  { <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` P ) >. , <. ( .r ` ndx ) , ( .r ` P ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( .s ` P ) >. , <. ( .i ` ndx ) , ( f e. B , g e. B |-> ( S gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( R ` x ) ) ( g ` x ) ) ) ) ) >. } ) u. ( { <. ( TopSet ` ndx ) , ( TopSet ` P ) >. , <. ( le ` ndx ) , ( le ` P ) >. , <. ( dist ` ndx ) , ( dist ` P ) >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) >. } ) )
36 25 7 26 30 35 prdsbaslem
 |-  ( ph -> .xb = ( a e. ( B X. B ) , c e. B |-> ( d e. ( ( 2nd ` a ) H c ) , e e. ( H ` a ) |-> ( x e. I |-> ( ( d ` x ) ( <. ( ( 1st ` a ) ` x ) , ( ( 2nd ` a ) ` x ) >. ( comp ` ( R ` x ) ) ( c ` x ) ) ( e ` x ) ) ) ) ) )