Metamath Proof Explorer


Theorem prdsvalstr

Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Assertion prdsvalstr
|- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) Struct <. 1 , ; 1 5 >.

Proof

Step Hyp Ref Expression
1 unass
 |-  ( ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) )
2 eqid
 |-  ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } )
3 2 imasvalstr
 |-  ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) Struct <. 1 , ; 1 2 >.
4 1nn0
 |-  1 e. NN0
5 4nn
 |-  4 e. NN
6 4 5 decnncl
 |-  ; 1 4 e. NN
7 homndx
 |-  ( Hom ` ndx ) = ; 1 4
8 4nn0
 |-  4 e. NN0
9 5nn
 |-  5 e. NN
10 4lt5
 |-  4 < 5
11 4 8 9 10 declt
 |-  ; 1 4 < ; 1 5
12 4 9 decnncl
 |-  ; 1 5 e. NN
13 ccondx
 |-  ( comp ` ndx ) = ; 1 5
14 6 7 11 12 13 strle2
 |-  { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } Struct <. ; 1 4 , ; 1 5 >.
15 2nn0
 |-  2 e. NN0
16 2lt4
 |-  2 < 4
17 4 15 5 16 declt
 |-  ; 1 2 < ; 1 4
18 3 14 17 strleun
 |-  ( ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) Struct <. 1 , ; 1 5 >.
19 1 18 eqbrtrri
 |-  ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) Struct <. 1 , ; 1 5 >.