Step |
Hyp |
Ref |
Expression |
1 |
|
preq12bg |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
2 |
1
|
necon3abid |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } =/= { C , D } <-> -. ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
3 |
|
ioran |
|- ( -. ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( -. ( A = C /\ B = D ) /\ -. ( A = D /\ B = C ) ) ) |
4 |
|
ianor |
|- ( -. ( A = C /\ B = D ) <-> ( -. A = C \/ -. B = D ) ) |
5 |
|
df-ne |
|- ( A =/= C <-> -. A = C ) |
6 |
|
df-ne |
|- ( B =/= D <-> -. B = D ) |
7 |
5 6
|
orbi12i |
|- ( ( A =/= C \/ B =/= D ) <-> ( -. A = C \/ -. B = D ) ) |
8 |
4 7
|
bitr4i |
|- ( -. ( A = C /\ B = D ) <-> ( A =/= C \/ B =/= D ) ) |
9 |
|
ianor |
|- ( -. ( A = D /\ B = C ) <-> ( -. A = D \/ -. B = C ) ) |
10 |
|
df-ne |
|- ( A =/= D <-> -. A = D ) |
11 |
|
df-ne |
|- ( B =/= C <-> -. B = C ) |
12 |
10 11
|
orbi12i |
|- ( ( A =/= D \/ B =/= C ) <-> ( -. A = D \/ -. B = C ) ) |
13 |
9 12
|
bitr4i |
|- ( -. ( A = D /\ B = C ) <-> ( A =/= D \/ B =/= C ) ) |
14 |
8 13
|
anbi12i |
|- ( ( -. ( A = C /\ B = D ) /\ -. ( A = D /\ B = C ) ) <-> ( ( A =/= C \/ B =/= D ) /\ ( A =/= D \/ B =/= C ) ) ) |
15 |
3 14
|
bitri |
|- ( -. ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( ( A =/= C \/ B =/= D ) /\ ( A =/= D \/ B =/= C ) ) ) |
16 |
2 15
|
bitrdi |
|- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } =/= { C , D } <-> ( ( A =/= C \/ B =/= D ) /\ ( A =/= D \/ B =/= C ) ) ) ) |