| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preq12bg |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 2 |
1
|
necon3abid |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ ¬ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 3 |
|
ioran |
⊢ ( ¬ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∧ ¬ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| 4 |
|
ianor |
⊢ ( ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ↔ ( ¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷 ) ) |
| 5 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶 ) |
| 6 |
|
df-ne |
⊢ ( 𝐵 ≠ 𝐷 ↔ ¬ 𝐵 = 𝐷 ) |
| 7 |
5 6
|
orbi12i |
⊢ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ↔ ( ¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷 ) ) |
| 8 |
4 7
|
bitr4i |
⊢ ( ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ↔ ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ) |
| 9 |
|
ianor |
⊢ ( ¬ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ↔ ( ¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐶 ) ) |
| 10 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷 ) |
| 11 |
|
df-ne |
⊢ ( 𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶 ) |
| 12 |
10 11
|
orbi12i |
⊢ ( ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ↔ ( ¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐶 ) ) |
| 13 |
9 12
|
bitr4i |
⊢ ( ¬ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ↔ ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ) |
| 14 |
8 13
|
anbi12i |
⊢ ( ( ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∧ ¬ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ∧ ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ) ) |
| 15 |
3 14
|
bitri |
⊢ ( ¬ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ∧ ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ) ) |
| 16 |
2 15
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ∧ ( 𝐴 ≠ 𝐷 ∨ 𝐵 ≠ 𝐶 ) ) ) ) |