Metamath Proof Explorer


Theorem prneimg2

Description: Two pairs are not equal if their counterparts are not equal. (Contributed by AV, 5-Sep-2025)

Ref Expression
Assertion prneimg2 ( ( ( 𝐴𝑈𝐵𝑉 ) ∧ ( 𝐶𝑋𝐷𝑌 ) ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ ( ( 𝐴𝐶𝐵𝐷 ) ∧ ( 𝐴𝐷𝐵𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 preq12bg ( ( ( 𝐴𝑈𝐵𝑉 ) ∧ ( 𝐶𝑋𝐷𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ) ) )
2 1 necon3abid ( ( ( 𝐴𝑈𝐵𝑉 ) ∧ ( 𝐶𝑋𝐷𝑌 ) ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ ¬ ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ) ) )
3 ioran ( ¬ ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ) ↔ ( ¬ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∧ ¬ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ) )
4 ianor ( ¬ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ↔ ( ¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷 ) )
5 df-ne ( 𝐴𝐶 ↔ ¬ 𝐴 = 𝐶 )
6 df-ne ( 𝐵𝐷 ↔ ¬ 𝐵 = 𝐷 )
7 5 6 orbi12i ( ( 𝐴𝐶𝐵𝐷 ) ↔ ( ¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷 ) )
8 4 7 bitr4i ( ¬ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ↔ ( 𝐴𝐶𝐵𝐷 ) )
9 ianor ( ¬ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ↔ ( ¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐶 ) )
10 df-ne ( 𝐴𝐷 ↔ ¬ 𝐴 = 𝐷 )
11 df-ne ( 𝐵𝐶 ↔ ¬ 𝐵 = 𝐶 )
12 10 11 orbi12i ( ( 𝐴𝐷𝐵𝐶 ) ↔ ( ¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐶 ) )
13 9 12 bitr4i ( ¬ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ↔ ( 𝐴𝐷𝐵𝐶 ) )
14 8 13 anbi12i ( ( ¬ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∧ ¬ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ) ↔ ( ( 𝐴𝐶𝐵𝐷 ) ∧ ( 𝐴𝐷𝐵𝐶 ) ) )
15 3 14 bitri ( ¬ ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷𝐵 = 𝐶 ) ) ↔ ( ( 𝐴𝐶𝐵𝐷 ) ∧ ( 𝐴𝐷𝐵𝐶 ) ) )
16 2 15 bitrdi ( ( ( 𝐴𝑈𝐵𝑉 ) ∧ ( 𝐶𝑋𝐷𝑌 ) ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ↔ ( ( 𝐴𝐶𝐵𝐷 ) ∧ ( 𝐴𝐷𝐵𝐶 ) ) ) )