Metamath Proof Explorer


Theorem probinc

Description: A probability law is increasing with regard to event set inclusion. (Contributed by Thierry Arnoux, 10-Feb-2017)

Ref Expression
Assertion probinc
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A C_ B ) -> ( P ` A ) <_ ( P ` B ) )

Proof

Step Hyp Ref Expression
1 simpl1
 |-  ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A C_ B ) -> P e. Prob )
2 domprobmeas
 |-  ( P e. Prob -> P e. ( measures ` dom P ) )
3 1 2 syl
 |-  ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A C_ B ) -> P e. ( measures ` dom P ) )
4 simpl2
 |-  ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A C_ B ) -> A e. dom P )
5 simpl3
 |-  ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A C_ B ) -> B e. dom P )
6 simpr
 |-  ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A C_ B ) -> A C_ B )
7 3 4 5 6 measssd
 |-  ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A C_ B ) -> ( P ` A ) <_ ( P ` B ) )