Metamath Proof Explorer


Theorem probdsb

Description: The probability of the complement of a set. That is, the probability that the event A does not occur. (Contributed by Thierry Arnoux, 15-Dec-2016)

Ref Expression
Assertion probdsb
|- ( ( P e. Prob /\ A e. dom P ) -> ( P ` ( U. dom P \ A ) ) = ( 1 - ( P ` A ) ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( P e. Prob /\ A e. dom P ) -> P e. Prob )
2 1 unveldomd
 |-  ( ( P e. Prob /\ A e. dom P ) -> U. dom P e. dom P )
3 simpr
 |-  ( ( P e. Prob /\ A e. dom P ) -> A e. dom P )
4 probdif
 |-  ( ( P e. Prob /\ U. dom P e. dom P /\ A e. dom P ) -> ( P ` ( U. dom P \ A ) ) = ( ( P ` U. dom P ) - ( P ` ( U. dom P i^i A ) ) ) )
5 1 2 3 4 syl3anc
 |-  ( ( P e. Prob /\ A e. dom P ) -> ( P ` ( U. dom P \ A ) ) = ( ( P ` U. dom P ) - ( P ` ( U. dom P i^i A ) ) ) )
6 probtot
 |-  ( P e. Prob -> ( P ` U. dom P ) = 1 )
7 elssuni
 |-  ( A e. dom P -> A C_ U. dom P )
8 sseqin2
 |-  ( A C_ U. dom P <-> ( U. dom P i^i A ) = A )
9 7 8 sylib
 |-  ( A e. dom P -> ( U. dom P i^i A ) = A )
10 9 fveq2d
 |-  ( A e. dom P -> ( P ` ( U. dom P i^i A ) ) = ( P ` A ) )
11 6 10 oveqan12d
 |-  ( ( P e. Prob /\ A e. dom P ) -> ( ( P ` U. dom P ) - ( P ` ( U. dom P i^i A ) ) ) = ( 1 - ( P ` A ) ) )
12 5 11 eqtrd
 |-  ( ( P e. Prob /\ A e. dom P ) -> ( P ` ( U. dom P \ A ) ) = ( 1 - ( P ` A ) ) )