Step |
Hyp |
Ref |
Expression |
1 |
|
inundif |
|- ( ( A i^i B ) u. ( A \ B ) ) = A |
2 |
1
|
fveq2i |
|- ( P ` ( ( A i^i B ) u. ( A \ B ) ) ) = ( P ` A ) |
3 |
|
simp1 |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> P e. Prob ) |
4 |
|
domprobsiga |
|- ( P e. Prob -> dom P e. U. ran sigAlgebra ) |
5 |
|
inelsiga |
|- ( ( dom P e. U. ran sigAlgebra /\ A e. dom P /\ B e. dom P ) -> ( A i^i B ) e. dom P ) |
6 |
4 5
|
syl3an1 |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( A i^i B ) e. dom P ) |
7 |
|
difelsiga |
|- ( ( dom P e. U. ran sigAlgebra /\ A e. dom P /\ B e. dom P ) -> ( A \ B ) e. dom P ) |
8 |
4 7
|
syl3an1 |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( A \ B ) e. dom P ) |
9 |
|
inindif |
|- ( ( A i^i B ) i^i ( A \ B ) ) = (/) |
10 |
|
probun |
|- ( ( P e. Prob /\ ( A i^i B ) e. dom P /\ ( A \ B ) e. dom P ) -> ( ( ( A i^i B ) i^i ( A \ B ) ) = (/) -> ( P ` ( ( A i^i B ) u. ( A \ B ) ) ) = ( ( P ` ( A i^i B ) ) + ( P ` ( A \ B ) ) ) ) ) |
11 |
9 10
|
mpi |
|- ( ( P e. Prob /\ ( A i^i B ) e. dom P /\ ( A \ B ) e. dom P ) -> ( P ` ( ( A i^i B ) u. ( A \ B ) ) ) = ( ( P ` ( A i^i B ) ) + ( P ` ( A \ B ) ) ) ) |
12 |
3 6 8 11
|
syl3anc |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` ( ( A i^i B ) u. ( A \ B ) ) ) = ( ( P ` ( A i^i B ) ) + ( P ` ( A \ B ) ) ) ) |
13 |
2 12
|
eqtr3id |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` A ) = ( ( P ` ( A i^i B ) ) + ( P ` ( A \ B ) ) ) ) |
14 |
13
|
oveq1d |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( ( P ` A ) - ( P ` ( A i^i B ) ) ) = ( ( ( P ` ( A i^i B ) ) + ( P ` ( A \ B ) ) ) - ( P ` ( A i^i B ) ) ) ) |
15 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
16 |
|
prob01 |
|- ( ( P e. Prob /\ ( A i^i B ) e. dom P ) -> ( P ` ( A i^i B ) ) e. ( 0 [,] 1 ) ) |
17 |
3 6 16
|
syl2anc |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` ( A i^i B ) ) e. ( 0 [,] 1 ) ) |
18 |
15 17
|
sselid |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` ( A i^i B ) ) e. CC ) |
19 |
|
prob01 |
|- ( ( P e. Prob /\ ( A \ B ) e. dom P ) -> ( P ` ( A \ B ) ) e. ( 0 [,] 1 ) ) |
20 |
3 8 19
|
syl2anc |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` ( A \ B ) ) e. ( 0 [,] 1 ) ) |
21 |
15 20
|
sselid |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` ( A \ B ) ) e. CC ) |
22 |
18 21
|
pncan2d |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( ( ( P ` ( A i^i B ) ) + ( P ` ( A \ B ) ) ) - ( P ` ( A i^i B ) ) ) = ( P ` ( A \ B ) ) ) |
23 |
14 22
|
eqtr2d |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` ( A \ B ) ) = ( ( P ` A ) - ( P ` ( A i^i B ) ) ) ) |