| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll1 |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A = B ) /\ ( A i^i B ) = (/) ) -> P e. Prob ) |
| 2 |
|
simplr |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A = B ) /\ ( A i^i B ) = (/) ) -> A = B ) |
| 3 |
|
simpr |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A = B ) /\ ( A i^i B ) = (/) ) -> ( A i^i B ) = (/) ) |
| 4 |
|
disj3 |
|- ( ( A i^i B ) = (/) <-> A = ( A \ B ) ) |
| 5 |
4
|
biimpi |
|- ( ( A i^i B ) = (/) -> A = ( A \ B ) ) |
| 6 |
|
difeq1 |
|- ( A = B -> ( A \ B ) = ( B \ B ) ) |
| 7 |
|
difid |
|- ( B \ B ) = (/) |
| 8 |
6 7
|
eqtrdi |
|- ( A = B -> ( A \ B ) = (/) ) |
| 9 |
5 8
|
sylan9eqr |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> A = (/) ) |
| 10 |
|
eqtr2 |
|- ( ( A = B /\ A = (/) ) -> B = (/) ) |
| 11 |
9 10
|
syldan |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> B = (/) ) |
| 12 |
9 11
|
uneq12d |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> ( A u. B ) = ( (/) u. (/) ) ) |
| 13 |
|
unidm |
|- ( (/) u. (/) ) = (/) |
| 14 |
12 13
|
eqtrdi |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> ( A u. B ) = (/) ) |
| 15 |
14
|
fveq2d |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> ( P ` ( A u. B ) ) = ( P ` (/) ) ) |
| 16 |
|
probnul |
|- ( P e. Prob -> ( P ` (/) ) = 0 ) |
| 17 |
15 16
|
sylan9eqr |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( P ` ( A u. B ) ) = 0 ) |
| 18 |
9
|
fveq2d |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> ( P ` A ) = ( P ` (/) ) ) |
| 19 |
18 16
|
sylan9eqr |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( P ` A ) = 0 ) |
| 20 |
11
|
fveq2d |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> ( P ` B ) = ( P ` (/) ) ) |
| 21 |
20 16
|
sylan9eqr |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( P ` B ) = 0 ) |
| 22 |
19 21
|
oveq12d |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( ( P ` A ) + ( P ` B ) ) = ( 0 + 0 ) ) |
| 23 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 24 |
22 23
|
eqtrdi |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( ( P ` A ) + ( P ` B ) ) = 0 ) |
| 25 |
17 24
|
eqtr4d |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) |
| 26 |
1 2 3 25
|
syl12anc |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A = B ) /\ ( A i^i B ) = (/) ) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) |
| 27 |
26
|
ex |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A = B ) -> ( ( A i^i B ) = (/) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) ) |
| 28 |
|
3anass |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) <-> ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) ) ) |
| 29 |
28
|
anbi1i |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) <-> ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) ) /\ A =/= B ) ) |
| 30 |
|
df-3an |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) <-> ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) ) /\ A =/= B ) ) |
| 31 |
29 30
|
bitr4i |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) <-> ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) ) |
| 32 |
|
simpl1 |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> P e. Prob ) |
| 33 |
|
prssi |
|- ( ( A e. dom P /\ B e. dom P ) -> { A , B } C_ dom P ) |
| 34 |
33
|
3ad2ant2 |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> { A , B } C_ dom P ) |
| 35 |
34
|
adantr |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> { A , B } C_ dom P ) |
| 36 |
|
prex |
|- { A , B } e. _V |
| 37 |
36
|
elpw |
|- ( { A , B } e. ~P dom P <-> { A , B } C_ dom P ) |
| 38 |
35 37
|
sylibr |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> { A , B } e. ~P dom P ) |
| 39 |
|
prct |
|- ( ( A e. dom P /\ B e. dom P ) -> { A , B } ~<_ _om ) |
| 40 |
39
|
3ad2ant2 |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> { A , B } ~<_ _om ) |
| 41 |
40
|
adantr |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> { A , B } ~<_ _om ) |
| 42 |
|
simp2l |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> A e. dom P ) |
| 43 |
|
simp2r |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> B e. dom P ) |
| 44 |
|
simp3 |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> A =/= B ) |
| 45 |
|
id |
|- ( x = A -> x = A ) |
| 46 |
|
id |
|- ( x = B -> x = B ) |
| 47 |
45 46
|
disjprg |
|- ( ( A e. dom P /\ B e. dom P /\ A =/= B ) -> ( Disj_ x e. { A , B } x <-> ( A i^i B ) = (/) ) ) |
| 48 |
42 43 44 47
|
syl3anc |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( Disj_ x e. { A , B } x <-> ( A i^i B ) = (/) ) ) |
| 49 |
48
|
biimpar |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> Disj_ x e. { A , B } x ) |
| 50 |
|
probcun |
|- ( ( P e. Prob /\ { A , B } e. ~P dom P /\ ( { A , B } ~<_ _om /\ Disj_ x e. { A , B } x ) ) -> ( P ` U. { A , B } ) = sum* x e. { A , B } ( P ` x ) ) |
| 51 |
32 38 41 49 50
|
syl112anc |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` U. { A , B } ) = sum* x e. { A , B } ( P ` x ) ) |
| 52 |
|
uniprg |
|- ( ( A e. dom P /\ B e. dom P ) -> U. { A , B } = ( A u. B ) ) |
| 53 |
52
|
fveq2d |
|- ( ( A e. dom P /\ B e. dom P ) -> ( P ` U. { A , B } ) = ( P ` ( A u. B ) ) ) |
| 54 |
53
|
3ad2ant2 |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( P ` U. { A , B } ) = ( P ` ( A u. B ) ) ) |
| 55 |
|
fveq2 |
|- ( x = A -> ( P ` x ) = ( P ` A ) ) |
| 56 |
55
|
adantl |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ x = A ) -> ( P ` x ) = ( P ` A ) ) |
| 57 |
|
fveq2 |
|- ( x = B -> ( P ` x ) = ( P ` B ) ) |
| 58 |
57
|
adantl |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ x = B ) -> ( P ` x ) = ( P ` B ) ) |
| 59 |
|
unitssxrge0 |
|- ( 0 [,] 1 ) C_ ( 0 [,] +oo ) |
| 60 |
|
simp1 |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> P e. Prob ) |
| 61 |
|
prob01 |
|- ( ( P e. Prob /\ A e. dom P ) -> ( P ` A ) e. ( 0 [,] 1 ) ) |
| 62 |
60 42 61
|
syl2anc |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( P ` A ) e. ( 0 [,] 1 ) ) |
| 63 |
59 62
|
sselid |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( P ` A ) e. ( 0 [,] +oo ) ) |
| 64 |
|
prob01 |
|- ( ( P e. Prob /\ B e. dom P ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
| 65 |
60 43 64
|
syl2anc |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
| 66 |
59 65
|
sselid |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( P ` B ) e. ( 0 [,] +oo ) ) |
| 67 |
56 58 42 43 63 66 44
|
esumpr |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> sum* x e. { A , B } ( P ` x ) = ( ( P ` A ) +e ( P ` B ) ) ) |
| 68 |
54 67
|
eqeq12d |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( ( P ` U. { A , B } ) = sum* x e. { A , B } ( P ` x ) <-> ( P ` ( A u. B ) ) = ( ( P ` A ) +e ( P ` B ) ) ) ) |
| 69 |
68
|
adantr |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( ( P ` U. { A , B } ) = sum* x e. { A , B } ( P ` x ) <-> ( P ` ( A u. B ) ) = ( ( P ` A ) +e ( P ` B ) ) ) ) |
| 70 |
51 69
|
mpbid |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` ( A u. B ) ) = ( ( P ` A ) +e ( P ` B ) ) ) |
| 71 |
31 70
|
sylanb |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` ( A u. B ) ) = ( ( P ` A ) +e ( P ` B ) ) ) |
| 72 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 73 |
|
simpll1 |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> P e. Prob ) |
| 74 |
|
simpll2 |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> A e. dom P ) |
| 75 |
73 74 61
|
syl2anc |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` A ) e. ( 0 [,] 1 ) ) |
| 76 |
72 75
|
sselid |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` A ) e. RR ) |
| 77 |
|
simpll3 |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> B e. dom P ) |
| 78 |
73 77 64
|
syl2anc |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
| 79 |
72 78
|
sselid |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` B ) e. RR ) |
| 80 |
|
rexadd |
|- ( ( ( P ` A ) e. RR /\ ( P ` B ) e. RR ) -> ( ( P ` A ) +e ( P ` B ) ) = ( ( P ` A ) + ( P ` B ) ) ) |
| 81 |
76 79 80
|
syl2anc |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( ( P ` A ) +e ( P ` B ) ) = ( ( P ` A ) + ( P ` B ) ) ) |
| 82 |
71 81
|
eqtrd |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) |
| 83 |
82
|
ex |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( ( A i^i B ) = (/) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) ) |
| 84 |
27 83
|
pm2.61dane |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( ( A i^i B ) = (/) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) ) |