Step |
Hyp |
Ref |
Expression |
1 |
|
simpll1 |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A = B ) /\ ( A i^i B ) = (/) ) -> P e. Prob ) |
2 |
|
simplr |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A = B ) /\ ( A i^i B ) = (/) ) -> A = B ) |
3 |
|
simpr |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A = B ) /\ ( A i^i B ) = (/) ) -> ( A i^i B ) = (/) ) |
4 |
|
disj3 |
|- ( ( A i^i B ) = (/) <-> A = ( A \ B ) ) |
5 |
4
|
biimpi |
|- ( ( A i^i B ) = (/) -> A = ( A \ B ) ) |
6 |
|
difeq1 |
|- ( A = B -> ( A \ B ) = ( B \ B ) ) |
7 |
|
difid |
|- ( B \ B ) = (/) |
8 |
6 7
|
eqtrdi |
|- ( A = B -> ( A \ B ) = (/) ) |
9 |
5 8
|
sylan9eqr |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> A = (/) ) |
10 |
|
eqtr2 |
|- ( ( A = B /\ A = (/) ) -> B = (/) ) |
11 |
9 10
|
syldan |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> B = (/) ) |
12 |
9 11
|
uneq12d |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> ( A u. B ) = ( (/) u. (/) ) ) |
13 |
|
unidm |
|- ( (/) u. (/) ) = (/) |
14 |
12 13
|
eqtrdi |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> ( A u. B ) = (/) ) |
15 |
14
|
fveq2d |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> ( P ` ( A u. B ) ) = ( P ` (/) ) ) |
16 |
|
probnul |
|- ( P e. Prob -> ( P ` (/) ) = 0 ) |
17 |
15 16
|
sylan9eqr |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( P ` ( A u. B ) ) = 0 ) |
18 |
9
|
fveq2d |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> ( P ` A ) = ( P ` (/) ) ) |
19 |
18 16
|
sylan9eqr |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( P ` A ) = 0 ) |
20 |
11
|
fveq2d |
|- ( ( A = B /\ ( A i^i B ) = (/) ) -> ( P ` B ) = ( P ` (/) ) ) |
21 |
20 16
|
sylan9eqr |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( P ` B ) = 0 ) |
22 |
19 21
|
oveq12d |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( ( P ` A ) + ( P ` B ) ) = ( 0 + 0 ) ) |
23 |
|
00id |
|- ( 0 + 0 ) = 0 |
24 |
22 23
|
eqtrdi |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( ( P ` A ) + ( P ` B ) ) = 0 ) |
25 |
17 24
|
eqtr4d |
|- ( ( P e. Prob /\ ( A = B /\ ( A i^i B ) = (/) ) ) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) |
26 |
1 2 3 25
|
syl12anc |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A = B ) /\ ( A i^i B ) = (/) ) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) |
27 |
26
|
ex |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A = B ) -> ( ( A i^i B ) = (/) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) ) |
28 |
|
3anass |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) <-> ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) ) ) |
29 |
28
|
anbi1i |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) <-> ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) ) /\ A =/= B ) ) |
30 |
|
df-3an |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) <-> ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) ) /\ A =/= B ) ) |
31 |
29 30
|
bitr4i |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) <-> ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) ) |
32 |
|
simpl1 |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> P e. Prob ) |
33 |
|
prssi |
|- ( ( A e. dom P /\ B e. dom P ) -> { A , B } C_ dom P ) |
34 |
33
|
3ad2ant2 |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> { A , B } C_ dom P ) |
35 |
34
|
adantr |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> { A , B } C_ dom P ) |
36 |
|
prex |
|- { A , B } e. _V |
37 |
36
|
elpw |
|- ( { A , B } e. ~P dom P <-> { A , B } C_ dom P ) |
38 |
35 37
|
sylibr |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> { A , B } e. ~P dom P ) |
39 |
|
prct |
|- ( ( A e. dom P /\ B e. dom P ) -> { A , B } ~<_ _om ) |
40 |
39
|
3ad2ant2 |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> { A , B } ~<_ _om ) |
41 |
40
|
adantr |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> { A , B } ~<_ _om ) |
42 |
|
simp2l |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> A e. dom P ) |
43 |
|
simp2r |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> B e. dom P ) |
44 |
|
simp3 |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> A =/= B ) |
45 |
|
id |
|- ( x = A -> x = A ) |
46 |
|
id |
|- ( x = B -> x = B ) |
47 |
45 46
|
disjprg |
|- ( ( A e. dom P /\ B e. dom P /\ A =/= B ) -> ( Disj_ x e. { A , B } x <-> ( A i^i B ) = (/) ) ) |
48 |
42 43 44 47
|
syl3anc |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( Disj_ x e. { A , B } x <-> ( A i^i B ) = (/) ) ) |
49 |
48
|
biimpar |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> Disj_ x e. { A , B } x ) |
50 |
|
probcun |
|- ( ( P e. Prob /\ { A , B } e. ~P dom P /\ ( { A , B } ~<_ _om /\ Disj_ x e. { A , B } x ) ) -> ( P ` U. { A , B } ) = sum* x e. { A , B } ( P ` x ) ) |
51 |
32 38 41 49 50
|
syl112anc |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` U. { A , B } ) = sum* x e. { A , B } ( P ` x ) ) |
52 |
|
uniprg |
|- ( ( A e. dom P /\ B e. dom P ) -> U. { A , B } = ( A u. B ) ) |
53 |
52
|
fveq2d |
|- ( ( A e. dom P /\ B e. dom P ) -> ( P ` U. { A , B } ) = ( P ` ( A u. B ) ) ) |
54 |
53
|
3ad2ant2 |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( P ` U. { A , B } ) = ( P ` ( A u. B ) ) ) |
55 |
|
fveq2 |
|- ( x = A -> ( P ` x ) = ( P ` A ) ) |
56 |
55
|
adantl |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ x = A ) -> ( P ` x ) = ( P ` A ) ) |
57 |
|
fveq2 |
|- ( x = B -> ( P ` x ) = ( P ` B ) ) |
58 |
57
|
adantl |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ x = B ) -> ( P ` x ) = ( P ` B ) ) |
59 |
|
unitssxrge0 |
|- ( 0 [,] 1 ) C_ ( 0 [,] +oo ) |
60 |
|
simp1 |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> P e. Prob ) |
61 |
|
prob01 |
|- ( ( P e. Prob /\ A e. dom P ) -> ( P ` A ) e. ( 0 [,] 1 ) ) |
62 |
60 42 61
|
syl2anc |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( P ` A ) e. ( 0 [,] 1 ) ) |
63 |
59 62
|
sselid |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( P ` A ) e. ( 0 [,] +oo ) ) |
64 |
|
prob01 |
|- ( ( P e. Prob /\ B e. dom P ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
65 |
60 43 64
|
syl2anc |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
66 |
59 65
|
sselid |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( P ` B ) e. ( 0 [,] +oo ) ) |
67 |
56 58 42 43 63 66 44
|
esumpr |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> sum* x e. { A , B } ( P ` x ) = ( ( P ` A ) +e ( P ` B ) ) ) |
68 |
54 67
|
eqeq12d |
|- ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( ( P ` U. { A , B } ) = sum* x e. { A , B } ( P ` x ) <-> ( P ` ( A u. B ) ) = ( ( P ` A ) +e ( P ` B ) ) ) ) |
69 |
68
|
adantr |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( ( P ` U. { A , B } ) = sum* x e. { A , B } ( P ` x ) <-> ( P ` ( A u. B ) ) = ( ( P ` A ) +e ( P ` B ) ) ) ) |
70 |
51 69
|
mpbid |
|- ( ( ( P e. Prob /\ ( A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` ( A u. B ) ) = ( ( P ` A ) +e ( P ` B ) ) ) |
71 |
31 70
|
sylanb |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` ( A u. B ) ) = ( ( P ` A ) +e ( P ` B ) ) ) |
72 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
73 |
|
simpll1 |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> P e. Prob ) |
74 |
|
simpll2 |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> A e. dom P ) |
75 |
73 74 61
|
syl2anc |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` A ) e. ( 0 [,] 1 ) ) |
76 |
72 75
|
sselid |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` A ) e. RR ) |
77 |
|
simpll3 |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> B e. dom P ) |
78 |
73 77 64
|
syl2anc |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
79 |
72 78
|
sselid |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` B ) e. RR ) |
80 |
|
rexadd |
|- ( ( ( P ` A ) e. RR /\ ( P ` B ) e. RR ) -> ( ( P ` A ) +e ( P ` B ) ) = ( ( P ` A ) + ( P ` B ) ) ) |
81 |
76 79 80
|
syl2anc |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( ( P ` A ) +e ( P ` B ) ) = ( ( P ` A ) + ( P ` B ) ) ) |
82 |
71 81
|
eqtrd |
|- ( ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) /\ ( A i^i B ) = (/) ) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) |
83 |
82
|
ex |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ A =/= B ) -> ( ( A i^i B ) = (/) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) ) |
84 |
27 83
|
pm2.61dane |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( ( A i^i B ) = (/) -> ( P ` ( A u. B ) ) = ( ( P ` A ) + ( P ` B ) ) ) ) |