Step |
Hyp |
Ref |
Expression |
1 |
|
simpll1 |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 = 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑃 ∈ Prob ) |
2 |
|
simplr |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 = 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 = 𝐵 ) |
3 |
|
simpr |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 = 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
4 |
|
disj3 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ 𝐴 = ( 𝐴 ∖ 𝐵 ) ) |
5 |
4
|
biimpi |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → 𝐴 = ( 𝐴 ∖ 𝐵 ) ) |
6 |
|
difeq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∖ 𝐵 ) = ( 𝐵 ∖ 𝐵 ) ) |
7 |
|
difid |
⊢ ( 𝐵 ∖ 𝐵 ) = ∅ |
8 |
6 7
|
eqtrdi |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∖ 𝐵 ) = ∅ ) |
9 |
5 8
|
sylan9eqr |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 = ∅ ) |
10 |
|
eqtr2 |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 = ∅ ) → 𝐵 = ∅ ) |
11 |
9 10
|
syldan |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 = ∅ ) |
12 |
9 11
|
uneq12d |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∪ 𝐵 ) = ( ∅ ∪ ∅ ) ) |
13 |
|
unidm |
⊢ ( ∅ ∪ ∅ ) = ∅ |
14 |
12 13
|
eqtrdi |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∪ 𝐵 ) = ∅ ) |
15 |
14
|
fveq2d |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( 𝑃 ‘ ∅ ) ) |
16 |
|
probnul |
⊢ ( 𝑃 ∈ Prob → ( 𝑃 ‘ ∅ ) = 0 ) |
17 |
15 16
|
sylan9eqr |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) → ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = 0 ) |
18 |
9
|
fveq2d |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ ∅ ) ) |
19 |
18 16
|
sylan9eqr |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) → ( 𝑃 ‘ 𝐴 ) = 0 ) |
20 |
11
|
fveq2d |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ ∅ ) ) |
21 |
20 16
|
sylan9eqr |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) → ( 𝑃 ‘ 𝐵 ) = 0 ) |
22 |
19 21
|
oveq12d |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) → ( ( 𝑃 ‘ 𝐴 ) + ( 𝑃 ‘ 𝐵 ) ) = ( 0 + 0 ) ) |
23 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
24 |
22 23
|
eqtrdi |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) → ( ( 𝑃 ‘ 𝐴 ) + ( 𝑃 ‘ 𝐵 ) ) = 0 ) |
25 |
17 24
|
eqtr4d |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 = 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) → ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) + ( 𝑃 ‘ 𝐵 ) ) ) |
26 |
1 2 3 25
|
syl12anc |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 = 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) + ( 𝑃 ‘ 𝐵 ) ) ) |
27 |
26
|
ex |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 = 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) + ( 𝑃 ‘ 𝐵 ) ) ) ) |
28 |
|
3anass |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ↔ ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ) ) |
29 |
28
|
anbi1i |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ↔ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ) ∧ 𝐴 ≠ 𝐵 ) ) |
30 |
|
df-3an |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ↔ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ) ∧ 𝐴 ≠ 𝐵 ) ) |
31 |
29 30
|
bitr4i |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ↔ ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ) |
32 |
|
simpl1 |
⊢ ( ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑃 ∈ Prob ) |
33 |
|
prssi |
⊢ ( ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → { 𝐴 , 𝐵 } ⊆ dom 𝑃 ) |
34 |
33
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ⊆ dom 𝑃 ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → { 𝐴 , 𝐵 } ⊆ dom 𝑃 ) |
36 |
|
prex |
⊢ { 𝐴 , 𝐵 } ∈ V |
37 |
36
|
elpw |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝒫 dom 𝑃 ↔ { 𝐴 , 𝐵 } ⊆ dom 𝑃 ) |
38 |
35 37
|
sylibr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → { 𝐴 , 𝐵 } ∈ 𝒫 dom 𝑃 ) |
39 |
|
prct |
⊢ ( ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → { 𝐴 , 𝐵 } ≼ ω ) |
40 |
39
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≼ ω ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → { 𝐴 , 𝐵 } ≼ ω ) |
42 |
|
simp2l |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ dom 𝑃 ) |
43 |
|
simp2r |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ dom 𝑃 ) |
44 |
|
simp3 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
45 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
46 |
|
id |
⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) |
47 |
45 46
|
disjprg |
⊢ ( ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ∧ 𝐴 ≠ 𝐵 ) → ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
48 |
42 43 44 47
|
syl3anc |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ( Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
49 |
48
|
biimpar |
⊢ ( ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ) |
50 |
|
probcun |
⊢ ( ( 𝑃 ∈ Prob ∧ { 𝐴 , 𝐵 } ∈ 𝒫 dom 𝑃 ∧ ( { 𝐴 , 𝐵 } ≼ ω ∧ Disj 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ) ) → ( 𝑃 ‘ ∪ { 𝐴 , 𝐵 } ) = Σ* 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑃 ‘ 𝑥 ) ) |
51 |
32 38 41 49 50
|
syl112anc |
⊢ ( ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ ∪ { 𝐴 , 𝐵 } ) = Σ* 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑃 ‘ 𝑥 ) ) |
52 |
|
uniprg |
⊢ ( ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
53 |
52
|
fveq2d |
⊢ ( ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ∪ { 𝐴 , 𝐵 } ) = ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
54 |
53
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑃 ‘ ∪ { 𝐴 , 𝐵 } ) = ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
55 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝐴 ) ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 = 𝐴 ) → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝐴 ) ) |
57 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝐵 ) ) |
58 |
57
|
adantl |
⊢ ( ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 = 𝐵 ) → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝐵 ) ) |
59 |
|
unitssxrge0 |
⊢ ( 0 [,] 1 ) ⊆ ( 0 [,] +∞ ) |
60 |
|
simp1 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → 𝑃 ∈ Prob ) |
61 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] 1 ) ) |
62 |
60 42 61
|
syl2anc |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] 1 ) ) |
63 |
59 62
|
sselid |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
64 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
65 |
60 43 64
|
syl2anc |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
66 |
59 65
|
sselid |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
67 |
56 58 42 43 63 66 44
|
esumpr |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → Σ* 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑃 ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ 𝐵 ) ) ) |
68 |
54 67
|
eqeq12d |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑃 ‘ ∪ { 𝐴 , 𝐵 } ) = Σ* 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ 𝐵 ) ) ) ) |
69 |
68
|
adantr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑃 ‘ ∪ { 𝐴 , 𝐵 } ) = Σ* 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ 𝐵 ) ) ) ) |
70 |
51 69
|
mpbid |
⊢ ( ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ 𝐵 ) ) ) |
71 |
31 70
|
sylanb |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ 𝐵 ) ) ) |
72 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
73 |
|
simpll1 |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑃 ∈ Prob ) |
74 |
|
simpll2 |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 ∈ dom 𝑃 ) |
75 |
73 74 61
|
syl2anc |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] 1 ) ) |
76 |
72 75
|
sselid |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ 𝐴 ) ∈ ℝ ) |
77 |
|
simpll3 |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ∈ dom 𝑃 ) |
78 |
73 77 64
|
syl2anc |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
79 |
72 78
|
sselid |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ 𝐵 ) ∈ ℝ ) |
80 |
|
rexadd |
⊢ ( ( ( 𝑃 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑃 ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) + ( 𝑃 ‘ 𝐵 ) ) ) |
81 |
76 79 80
|
syl2anc |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑃 ‘ 𝐴 ) +𝑒 ( 𝑃 ‘ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) + ( 𝑃 ‘ 𝐵 ) ) ) |
82 |
71 81
|
eqtrd |
⊢ ( ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) + ( 𝑃 ‘ 𝐵 ) ) ) |
83 |
82
|
ex |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) + ( 𝑃 ‘ 𝐵 ) ) ) ) |
84 |
27 83
|
pm2.61dane |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝑃 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) + ( 𝑃 ‘ 𝐵 ) ) ) ) |