| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
| 2 |
1
|
fveq2i |
⊢ ( 𝑃 ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝑃 ‘ 𝐴 ) |
| 3 |
|
simp1 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → 𝑃 ∈ Prob ) |
| 4 |
|
domprobsiga |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
| 5 |
|
inelsiga |
⊢ ( ( dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) |
| 6 |
4 5
|
syl3an1 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) |
| 7 |
|
difelsiga |
⊢ ( ( dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝐴 ∖ 𝐵 ) ∈ dom 𝑃 ) |
| 8 |
4 7
|
syl3an1 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝐴 ∖ 𝐵 ) ∈ dom 𝑃 ) |
| 9 |
|
inindif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
| 10 |
|
probun |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ∧ ( 𝐴 ∖ 𝐵 ) ∈ dom 𝑃 ) → ( ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ → ( 𝑃 ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ) |
| 11 |
9 10
|
mpi |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ∧ ( 𝐴 ∖ 𝐵 ) ∈ dom 𝑃 ) → ( 𝑃 ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 12 |
3 6 8 11
|
syl3anc |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 13 |
2 12
|
eqtr3id |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐴 ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( 𝑃 ‘ 𝐴 ) − ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) ) − ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 15 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 16 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
| 17 |
3 6 16
|
syl2anc |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
| 18 |
15 17
|
sselid |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
| 19 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∖ 𝐵 ) ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
| 20 |
3 8 19
|
syl2anc |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
| 21 |
15 20
|
sselid |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℂ ) |
| 22 |
18 21
|
pncan2d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) + ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) ) − ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
| 23 |
14 22
|
eqtr2d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝑃 ‘ 𝐴 ) − ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |