Metamath Proof Explorer


Theorem probdif

Description: The probability of the difference of two event sets. (Contributed by Thierry Arnoux, 12-Dec-2016)

Ref Expression
Assertion probdif PProbAdomPBdomPPAB=PAPAB

Proof

Step Hyp Ref Expression
1 inundif ABAB=A
2 1 fveq2i PABAB=PA
3 simp1 PProbAdomPBdomPPProb
4 domprobsiga PProbdomPransigAlgebra
5 inelsiga domPransigAlgebraAdomPBdomPABdomP
6 4 5 syl3an1 PProbAdomPBdomPABdomP
7 difelsiga domPransigAlgebraAdomPBdomPABdomP
8 4 7 syl3an1 PProbAdomPBdomPABdomP
9 inindif ABAB=
10 probun PProbABdomPABdomPABAB=PABAB=PAB+PAB
11 9 10 mpi PProbABdomPABdomPPABAB=PAB+PAB
12 3 6 8 11 syl3anc PProbAdomPBdomPPABAB=PAB+PAB
13 2 12 eqtr3id PProbAdomPBdomPPA=PAB+PAB
14 13 oveq1d PProbAdomPBdomPPAPAB=PAB+PAB-PAB
15 unitsscn 01
16 prob01 PProbABdomPPAB01
17 3 6 16 syl2anc PProbAdomPBdomPPAB01
18 15 17 sselid PProbAdomPBdomPPAB
19 prob01 PProbABdomPPAB01
20 3 8 19 syl2anc PProbAdomPBdomPPAB01
21 15 20 sselid PProbAdomPBdomPPAB
22 18 21 pncan2d PProbAdomPBdomPPAB+PAB-PAB=PAB
23 14 22 eqtr2d PProbAdomPBdomPPAB=PAPAB