| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll1 |
|
| 2 |
|
simplr |
|
| 3 |
|
simpr |
|
| 4 |
|
disj3 |
|
| 5 |
4
|
biimpi |
|
| 6 |
|
difeq1 |
|
| 7 |
|
difid |
|
| 8 |
6 7
|
eqtrdi |
|
| 9 |
5 8
|
sylan9eqr |
|
| 10 |
|
eqtr2 |
|
| 11 |
9 10
|
syldan |
|
| 12 |
9 11
|
uneq12d |
|
| 13 |
|
unidm |
|
| 14 |
12 13
|
eqtrdi |
|
| 15 |
14
|
fveq2d |
|
| 16 |
|
probnul |
|
| 17 |
15 16
|
sylan9eqr |
|
| 18 |
9
|
fveq2d |
|
| 19 |
18 16
|
sylan9eqr |
|
| 20 |
11
|
fveq2d |
|
| 21 |
20 16
|
sylan9eqr |
|
| 22 |
19 21
|
oveq12d |
|
| 23 |
|
00id |
|
| 24 |
22 23
|
eqtrdi |
|
| 25 |
17 24
|
eqtr4d |
|
| 26 |
1 2 3 25
|
syl12anc |
|
| 27 |
26
|
ex |
|
| 28 |
|
3anass |
|
| 29 |
28
|
anbi1i |
|
| 30 |
|
df-3an |
|
| 31 |
29 30
|
bitr4i |
|
| 32 |
|
simpl1 |
|
| 33 |
|
prssi |
|
| 34 |
33
|
3ad2ant2 |
|
| 35 |
34
|
adantr |
|
| 36 |
|
prex |
|
| 37 |
36
|
elpw |
|
| 38 |
35 37
|
sylibr |
|
| 39 |
|
prct |
|
| 40 |
39
|
3ad2ant2 |
|
| 41 |
40
|
adantr |
|
| 42 |
|
simp2l |
|
| 43 |
|
simp2r |
|
| 44 |
|
simp3 |
|
| 45 |
|
id |
|
| 46 |
|
id |
|
| 47 |
45 46
|
disjprg |
|
| 48 |
42 43 44 47
|
syl3anc |
|
| 49 |
48
|
biimpar |
|
| 50 |
|
probcun |
|
| 51 |
32 38 41 49 50
|
syl112anc |
|
| 52 |
|
uniprg |
|
| 53 |
52
|
fveq2d |
|
| 54 |
53
|
3ad2ant2 |
|
| 55 |
|
fveq2 |
|
| 56 |
55
|
adantl |
|
| 57 |
|
fveq2 |
|
| 58 |
57
|
adantl |
|
| 59 |
|
unitssxrge0 |
|
| 60 |
|
simp1 |
|
| 61 |
|
prob01 |
|
| 62 |
60 42 61
|
syl2anc |
|
| 63 |
59 62
|
sselid |
|
| 64 |
|
prob01 |
|
| 65 |
60 43 64
|
syl2anc |
|
| 66 |
59 65
|
sselid |
|
| 67 |
56 58 42 43 63 66 44
|
esumpr |
|
| 68 |
54 67
|
eqeq12d |
|
| 69 |
68
|
adantr |
|
| 70 |
51 69
|
mpbid |
|
| 71 |
31 70
|
sylanb |
|
| 72 |
|
unitssre |
|
| 73 |
|
simpll1 |
|
| 74 |
|
simpll2 |
|
| 75 |
73 74 61
|
syl2anc |
|
| 76 |
72 75
|
sselid |
|
| 77 |
|
simpll3 |
|
| 78 |
73 77 64
|
syl2anc |
|
| 79 |
72 78
|
sselid |
|
| 80 |
|
rexadd |
|
| 81 |
76 79 80
|
syl2anc |
|
| 82 |
71 81
|
eqtrd |
|
| 83 |
82
|
ex |
|
| 84 |
27 83
|
pm2.61dane |
|